Chemical Papers

, Volume 71, Issue 11, pp 2185–2194 | Cite as

Chemical reactivity descriptors evaluation for determining catalytic activity, redox potential, and oxygen binding of metallophthalocyanines

  • Cristian Linares-Flores
  • Ramiro Arratia-Pérez
  • Desmond MacLeod Carey
Original Paper


In this article, we employed density functional theory calculation methods to determine the relationship between the chemical hardness (η), intermolecular chemical hardness (η DA), and nucleophilicity (N) chemical reactivity descriptors, as well as the energy of the occupied frontier orbitals (E a1g), and the electrocatalytic activity of different metallophthalocyanines [MPc’s with M=Cr(II), Mn(II), Fe(II), Co(I), Ni(II), and Cu(II)] for the oxygen reduction reaction. Our results suggest that η DA, N, and E a1g are appropriate parameters to estimate the electrocatalytic activity. On the other hand, the type of the metallic center determines the strength of the oxygen-binding energy, where a strong electronic interaction promotes the efficient electro-reduction of the dioxygen molecule, which is observed experimentally as a high catalytic activity.


Metallophthalocyanines Chemical hardness Intermolecular chemical hardness Nucleophilicity index 



The authors thank the financial support of FONDECYT Grants 1131123, 1150629, 3150438 and INICIATIVA CIENTIFICA MILENIO Grant RC120001.


  1. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41. doi: 10.1016/0301-0104(73)80059-X CrossRefGoogle Scholar
  2. Barraclough CG, Martin RL, Mitra S, Sherwood RC (1970) J Chem Phys 53:1638. doi: 10.1063/1.1674236 CrossRefGoogle Scholar
  3. Cardenas-Jiron GI, Zagal JH (2000) J Electroanal Chem 489:96–100. doi: 10.1016/S0022-0728(00)00209-6 CrossRefGoogle Scholar
  4. Cardenas-Jiron GI, Zagal JH (2001) J Electroanal Chem 497(1–2):55–60. doi: 10.1016/S0022-0728(00)00434-4 CrossRefGoogle Scholar
  5. Contreras R, Andres J, Safont VS, Campodonico P, Santos JG (2003) J Phys Chem A 107(29):5588–5593. doi: 10.1021/jp0302865 CrossRefGoogle Scholar
  6. de Diesbach H, von der Weid W (1927) Helv Chim Acta 10:886. doi: 10.1002/hlca.192701001110 CrossRefGoogle Scholar
  7. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615. doi: 10.1021/jo800572a CrossRefGoogle Scholar
  8. Geerlings P, De Proft F, Martin JML (1996) In recent developments and applications of modern density functional theory. In: Seminario JM (ed) Theoretical and computational chemistry, vol 4. Elsevier, Amsterdam, p 773. ISBN 9780444824042CrossRefGoogle Scholar
  9. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873. doi: 10.1021/cr990029p CrossRefGoogle Scholar
  10. Geraldo G, Linares C, Chen Y, Ureta-Zañartu S, Zagal JH (2002) Electrochem Commun 4:182. doi: 10.1016/S1388-2481(01)00300-9 CrossRefGoogle Scholar
  11. Hoffmann R, Chen M, Thorn D (1977) Inorg Chem 16:503. doi: 10.1021/ic50169a001 CrossRefGoogle Scholar
  12. Jaramillo P, Pérez P, Contreras R, Tiznado W, Fuentealba P (2006) J Phys Chem A 110:8181–8187. doi: 10.1021/jp057351q CrossRefGoogle Scholar
  13. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct THOECHEM 865:68. doi: 10.1016/j.theochem.2008.06.022 CrossRefGoogle Scholar
  14. Kirner JF, Dow W, Scheidt WR (1976) Inorg Chem 15:1685. doi: 10.1021/ic50161a042 CrossRefGoogle Scholar
  15. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim. ISBN 978-3-527-30372-4Google Scholar
  16. Koopmans T (1933) Physica 1:104–113. doi: 10.1016/S0031-8914(34)90011-2 CrossRefGoogle Scholar
  17. Labarta A, Molins E, Viñas X, Tejada J, Caubet A, Alvarez S (1984) J Chem Phys 80:444. doi: 10.1063/1.446469 CrossRefGoogle Scholar
  18. Lever ABP (1965) J Chem Soc 1821. doi: 10.1039/JR9650001821
  19. Leznoff CC, Lever ABP (1993) Phthalocyanines properties and applications, vol 3, Chap 1. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  20. Liao MS, Scheiner S (2001) J Chem Phys 114:9780. doi: 10.1063/1.1367374 CrossRefGoogle Scholar
  21. Linares C, Geraldo D, Paez M, Zagal JH (2003) J Solid State Electrochem 7:626. doi: 10.1590/S0103-50532008000400016 CrossRefGoogle Scholar
  22. Liu K, Lei Y, Wang G (2013) J Chem Phys 139:204306. doi: 10.1063/1.4832696 CrossRefGoogle Scholar
  23. Manassen J, Bar-Ilan A (1970) J Cat 17(1):86. doi: 10.1016/0021-9517(70)90076-X CrossRefGoogle Scholar
  24. Miyoshi H (1974) Bull Chem Soc Jpn 47:561. doi: 10.1246/bcsj.47.561 CrossRefGoogle Scholar
  25. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516. doi: 10.1021/ja00364a005 CrossRefGoogle Scholar
  26. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Clarendon Press, New York, Oxford. ISBN 978-0195092769Google Scholar
  27. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671. doi: 10.1103/PhysRevB.46.6671 CrossRefGoogle Scholar
  28. Pérez P, Domingo LR, Duque-Noreña M, Chamorro E (2009) J Mol Struct THOECHEM 895:86. doi: 10.1016/j.theochem.2008.10.014 CrossRefGoogle Scholar
  29. Randin J-P (1974) Electrochim Acta 19:83. doi: 10.1016/0013-4686(74)85060-7 CrossRefGoogle Scholar
  30. Savy M, Andro P, Bernard C, Magner G (1973) Electrochim Acta 18(2):191. doi: 10.1016/0013-4686(73)80011-8 CrossRefGoogle Scholar
  31. SCM (2002) ADF2002.01, Vrije Universiteit, Amsterdam, The Netherlands. Accessed 01 June 2017
  32. Senff H, Klemm W (1939) J Prakt Chem 154:73. doi: 10.1002/prac.19391540303 CrossRefGoogle Scholar
  33. Shi Z, Zhang J (2007) J Phys Chem C 111:7084. doi: 10.1021/jp0671749 CrossRefGoogle Scholar
  34. Sorokin AB (2013) Chem Rev 113:8152. doi: 10.1021/cr4000072 CrossRefGoogle Scholar
  35. Stillman MJ, Thomson AJ (1974) J Chem Soc Faraday Trans 70:790. doi: 10.1039/F29747000790 CrossRefGoogle Scholar
  36. Sun S, Jiang N, Xia D (2011) J Phys Chem C 115:9511. doi: 10.1021/jp101036j CrossRefGoogle Scholar
  37. Tsuda M, Dy ES, Kasai H (2005) J Chem Phys 122:244719. doi: 10.1063/1.1947187 CrossRefGoogle Scholar
  38. Van Lenthe E, Baerends EJ (2003) J Comput Chem 24(9):1142. doi: 10.1002/jcc.10255 CrossRefGoogle Scholar
  39. Versluis L, Ziegler T (1988) J Chem Phys 88:322. doi: 10.1063/1.454603 CrossRefGoogle Scholar
  40. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200. doi: 10.1139/p80-159 CrossRefGoogle Scholar
  41. Wiesener K, Ohms D, Neumann V, Franke R (1989) Mater Chem Phys 22(3–4):457–475. doi: 10.1016/0254-0584(89)90010-2 CrossRefGoogle Scholar
  42. Williams GA, Figgis BN, Mason R, Mason SA, Fielding PE (1980) J Chem Soc Dalton 1688. doi: 10.1039/DT9800001688
  43. Wu W, Kerridge A, Harker AH, Fisher A (2008) J Phys Rev B77:184403. doi: 10.1103/PhysRevB.77.184403 CrossRefGoogle Scholar
  44. Zagal JH (1992) Coord Chem Rev 119:89. doi: 10.1016/0010-8545(92)80031-L CrossRefGoogle Scholar
  45. Zagal JH (2003) Macrocycles. In: Vielstich W, Gasteiger HA, Lamm A (eds) Hardbook of fuel cells-fundamentals, technology, and applications, chapter 37. Wiley, New York. ISBN 978-0-471-49926-8Google Scholar
  46. Zagal JH, Cardenas-Jiron GI (2000) J Electroanal Chem 489(1–2):96–100. doi: 10.1016/S0022-0728(00)00209-6 CrossRefGoogle Scholar
  47. Zagal JH, Koper MTM (2016) Angew Chem Int Ed 55(47):14510. doi: 10.1002/anie.201604311 CrossRefGoogle Scholar
  48. Zagal JH, Gulppi M, Isaacs M, Cardenas-Jirón G, Aguirre MJ (1998) Electrochim Acta 44:1349. doi: 10.1016/S0013-4686(98)00257-6 CrossRefGoogle Scholar
  49. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254(23–24):2755. doi: 10.1016/j.ccr.2010.05.001 CrossRefGoogle Scholar
  50. Zagal JH, Recio FJ, Gutierrez CA, Zuñiga C, Páez MA, Caro CA (2014) Electrochem Commun 41:24–26. doi: 10.1016/j.elecom.2014.01.009 CrossRefGoogle Scholar
  51. Zerner M, Gouterman M (1966) Theor Chim Acta 4:44. doi: 10.1007/BF00526010 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Materials CenterUniversidad Autónoma de ChileSan MiguelChile
  2. 2.Centro de Nanociencias Aplicadas (CENAP), Doctorado de Fisicoquímica MolecularUniversidad Andres BelloSantiagoChile

Personalised recommendations