Skip to main content
Log in

Batch synthesis of polyoxometalate-based phosphonium compounds by one-step room-temperature mechanochemical process, and their morphology-dependent antibacterial activities

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Based on the Keggin-type polyoxometalate and quaternary phosphonium salt, the (MePh3P) n -POMKeggin compounds were synthesized via one-step mechanochemical process at room temperature. It showed the advantages of convenient operation, lower cost, less pollution, and mass production. Wonderfully, the morphology of compounds presented a strong dependence on the number of crystal water in the source heteropoly acids. A hypothesis of ‘semi-solid nonlocalized waters’ was brought to discuss the formation mechanism of polyhedrons. Antibacterial experiments indicate that the samples have good antibacterial activities, which resulted from the increase of the positive electrical charge of the phosphonium cation caused by the polarization by POM groups. Additionally, a formula of inhibitory zone per unit surface area was designed to more precisely evaluate the antibacterial activity of the materials. The calculation result indicated that the polyhedral particles give a higher surface antibacterial activity than the grain powder. This work developed an alternative synthesis method for composites from a new perspective, and will promote the research of new type of antibacterial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amanchi SR, Khenkin AM, Diskin-Posner Y, Neumann R (2015) Bismuth-substituted “sandwich” type polyoxometalate catalyst for activation of peroxide: umpolung of the peroxo intermediate and change of chemoselectivity. ACS Catal 5:3336–3341. doi:10.1021/acscatal.5b00066

    Article  CAS  Google Scholar 

  • Boldyreva EV (1997) The concept of the ‘reaction cavity’: a link between solution and solid state chemistry. Solid State Ionics 101–103:843–849. doi:10.1016/SO167-2738(97)00318-4

    Article  Google Scholar 

  • Chen JX, Jin B, Dai WL, Deng SL, Cao LR, Cao ZJ, Luo SL, Luo XB, Tu XM, Au CT (2014) Catalytic fixation of CO2 to cyclic carbonates over biopolymer chitosan-grafted quarternary phosphonium ionic liquid as a recyclable catalyst. Appl Catal A-Gen 484:26–32. doi:10.1016/j.apcata.2014.07.008

    Article  CAS  Google Scholar 

  • Clemente-Leόn M, Agricole B, Mingotaud C, Gómez-García CJ, Coronado E, Delhaes P (1997) Toward new organic/inorganic superlattices: Keggin polyoxometalates in Langmuir and Langmuir–Blodgett films. Langmuir 13:2340–2347. doi:10.1021/la960576v

    Article  Google Scholar 

  • Hartung S, Bucher N, Chen HY, Al-Oweini R, Sreejith S, Borah P, Zhao YL, Kortz U, Stimming U, Hoster HE, Srinivasan M (2015) Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. J Power Sources 288:270–277. doi:10.1016/j.jpowsour.2015.04.009

    Article  CAS  Google Scholar 

  • He JJ, Sun HQ, Indrawirawan S, Duan XG, Tade MO, Wang SB (2015) Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. J Colloid Interf Sci 456:15–21. doi:10.1016/j.jcis.2015.06.003

    Article  CAS  Google Scholar 

  • Hu PF, Cao YL (2012) A new chemical route to a hybrid nanostructure: room-temperature solid-state reaction synthesis of Ag@AgCl with efficient photocatalysis. Dalton Trans 41:8908–8912. doi:10.1039/c2dt30779k

    Article  CAS  Google Scholar 

  • Hu PF, Cao YL, Jia DZ, Li Q, Liu RL (2014) Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis. Sci Rep 4:4153. doi:10.1038/srep04153

    Article  Google Scholar 

  • Leclaire A, Biot C, Rebbah H, Borela MM, Raveau B (1998) A new three-dimensional sodium molybdenum(v) hydroxymonophosphate: Na8(Mo2O4OH)3(PO4)3(PO3OH)·12.25H2O. J Mater Chem 8:439–444. doi:10.1039/A707568E

    Article  CAS  Google Scholar 

  • Mao R, Zhan FY, Bu NJ, Cao YL, Hu PF, Gong GD, Zhen Q (2016) Room-temperature mechanochemical preparation and electrochemistry properties of polyoxometalate-based inorganic–organic hybrid. Mater Lett 173:111–114. doi:10.1016/j.matlet.2016.03.029

    Article  CAS  Google Scholar 

  • Müller A, Petters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clusters nanoscale magnets. Chem Rev 98:239–271. doi:10.1021/cr9603946

    Article  Google Scholar 

  • Naskar B, Diat O, Nardello-Rataj V, Bauduin P (2015) Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces. J Phys Chem C 119:20985–20992. doi:10.1021/acs.jpcc.5b06273

    Article  CAS  Google Scholar 

  • Popa A, Davidescu CM, Trif R, Ilia G, Iliescu S, Dehelean G (2003) Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on gel-type’ styrene–divinylbenzene copolymers. React Funct Polym 55:151–158. doi:10.1016/S1381-5148(02)00224-9

    Article  CAS  Google Scholar 

  • Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Vibrational investigations of polyoxometalates. 2. Evidence for anion–anion interactions in molybdenum (VI) and tungsten (VI) compounds related to the Keggin structure. Inorg Chem 22:207–212. doi:10.1021/ic00144a006

    Article  CAS  Google Scholar 

  • Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Hybrid polyoxometalate materials for photo (electro-) chemical applications. Coordin Chem Rev 306:217–234. doi:10.1016/j.ccr.2015.06.016

    Article  CAS  Google Scholar 

  • Wang RY, Jia DZ, Zhang L, Liu L, Guo ZP, Li BQ, Wang JX (2006) Rapid synthesis of amino acid polyoxometalate nanotubes by one-step solid-state chemical reaction at room temperature. Adv Funct Mater 16:687–692. doi:10.1002/adfm.200500549

    Article  CAS  Google Scholar 

  • Wehner W, Lorenz J, Grade R (1997) Biocidally active compounds patent-US, vol 5, pp 118–346

  • Weiss RG, Ramamurthy V, Hammond GS (1993) Photochemistry in organized and confining media: a model. Acc Chem Res 26:530–536. doi:10.1021/ar00034a003

    Article  CAS  Google Scholar 

  • Wittig G, Geissler G (1953) Zur Reaktionsweise des Pentaphenyl-phosphors und einiger Derivate. Liebigs Ann Chem 580:44–57. doi:10.1002/jlac.19535800107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21361024, 21271151, 51471101, 51472154, 51272154), China Postdoctoral Science Foundation (No. 2014T70955), and Science and Technology Commission of Shanghai Municipality (No. 14ZR1416400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Ma, C., Zhan, F. et al. Batch synthesis of polyoxometalate-based phosphonium compounds by one-step room-temperature mechanochemical process, and their morphology-dependent antibacterial activities. Chem. Pap. 71, 1323–1329 (2017). https://doi.org/10.1007/s11696-016-0124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0124-1

Keywords

Navigation