Advertisement

Chemical Papers

, Volume 71, Issue 2, pp 393–400 | Cite as

Effect of water release on thermal properties of polyaniline

  • Alexandra Rudajevová
  • Jan Prokeš
  • Martin Varga
Original Paper

Abstract

Conducting polyaniline (PANI) was studied by thermal expansion measurement, thermogravimetric analysis and by electrical conductivity measurement. Relative elongation and coefficient of thermal expansion (CTE) were determined from room temperature to 60 °C. Various temperature profiles were used. During heating, the treatment of samples at a constant temperature higher than the room temperature, or evacuation, water was released from the samples. Water release was detected by mass and thermogravimetric analysis. Water release was connected with shrinkage of the PANI samples and apparent negative CTE in the first thermal cycle. In the following thermal cycles, it increased and reached a positive value. CTE of PANI attained values in the range of −30 × 10−6 K−1 up to 20 × 10−6 K−1 in dependence on water content in the sample before measurement and on experimental conditions of measurement. Irreversible shrinkage of the polymer was the largest in the first thermal cycle. Water release exhibited a strong time and temperature dependence, and it was only partially reversible. The electrical conductivity was measured by a four-point van der Pauw method. Relative electrical conductivity decreased with amounts of water release. Relative decrease of electrical conductivity reached as far as 20% after evacuation 7 h at the room temperature.

Keywords

Polyaniline Water-born polymer Thermal expansion Electrical conduction TG analysis 

Notes

Acknowledgements

Experiments have been performed in the Magnetism and Low Temperature Laboratories (http://mltl.eu/) within the program of the Czech Research Infrastructures (LM 2011025). The financial support of the Czech Science Foundation (13-00270S, P108/11/1298) is also gratefully acknowledged.

References

  1. Alix A, Lemoine V, Nechtschein M, Travers JP, Menardo C (1989) Water absorption study in polyaniline. Synth Met 29:E457–E462. doi: 10.1016/0379-6779(89)90333-0 CrossRefGoogle Scholar
  2. Angelopoulos M, Ray A, MacDiarmid AG, Epstein AJ (1987) Polyaniline: processability from aqeous solutions and effect of water vapour on conductivity. Synth Met 21:21–30. doi: 10.1016/0379-6779(87)90062-2 CrossRefGoogle Scholar
  3. Ansari R, Price WE, Wallace GG (1996) Effect of thermal treatment on the electroactivity of polyaniline. Polymer 37:917–923. doi: 10.1016/0032-3861(96)87273-9 CrossRefGoogle Scholar
  4. Baughman RH (1973) Negative thermal expansion in crystalline linear polymers. J Chem Phys 58:2976–2983. doi: 10.1063/1.1679607 CrossRefGoogle Scholar
  5. Byshkin MS, Correa A, Buonocore F, Di Matteo A, Milano G (2013) A united grand canonical Monte Carlo study of partially doped polyaniline. J Chem Phys 139:244906(1–9). doi: 10.1063/1.48484697
  6. Byshkin MS, Buonocore F, Di Matteo A, Milano G (2015) A unified bottom up multiscale strategy to model gas sensors based on conductive polymers. Sens Actuators B 211:42–51. doi: 10.1016/j.snb.2015.01.039 CrossRefGoogle Scholar
  7. Calero S, Álvarez PG (2014) Hydrogen bonding of water confined in zeolites and their zeolitic imidazolate framework counterparts. RSC Adv 4:29571–29580. doi: 10.1039/C4RA01508H CrossRefGoogle Scholar
  8. Calero C, Gordillo MC, Martí J (2013) Size effect on water adsorbed on hydrophobic probes at the nanometric scale. J Chem Phys 38:214702 (1–8). doi: 10.1063/1.4807092
  9. Canales M, Aradilla D, Aleman C (2011) Water absorption in polyaniline emeraldine base. J Polym Sci Part B Polym Phys 49:13221331. doi: 10.1002/polb.22300 CrossRefGoogle Scholar
  10. Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthetized with funtionalized sulfonic acids for blends manufacture. Mater Res 10:425–429. doi: 10.1002/pi.4131 CrossRefGoogle Scholar
  11. Carey T, Corma A, Rey F, Tang CC, Hriljac JA, Anderson PA (2012) The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology. Chem Commun 48:5829–5831. doi: 10.1063/1.4807092 CrossRefGoogle Scholar
  12. Davis GT, Eby RK, Colson JP (1970) Thermal expansion of polyethylene unit cell: effect of laminar thickness. J Appl Phys 41:4316–4326. doi: 10.1063/1.1658462 CrossRefGoogle Scholar
  13. Hartwig G (1994) Polymer properties at rooms and cryogenic temperatures. Plenum Press, New York. doi: 10.1002/pi.1995.210380316
  14. Kobayashi Y, Keller A (1970) The temperature coefficient of the c lattice parameter of polyethylene; an example of thermal shrinkage along the chain direction. Polymer 11:114–117. doi: 10.1016/0032-3861(70)90030-3 CrossRefGoogle Scholar
  15. Lin JS (1999) Effect polypyrrole deposition of carbon fiber on thermal expansion of carbonfiber-epoxy composites. J Polym Res 6:237–242. doi: 10.1007/S10965-0093-0 CrossRefGoogle Scholar
  16. Lubentsov BZ, Timofeeva ON, Khindekel ML (1991) Conducting polymer interaction with gaseous substances II. PANI-H2O, PANI-NH3. Synth Met 45:235–240. doi: 10.1016/0379-6779(91)91808-N CrossRefGoogle Scholar
  17. Lubentsov B, Timofeeva O, Saratovskikh S, Krinichnyi V, Pelekh A, Dmitrenko V, Khidekel M (1992) The study of conducting polymer interaction with gaseous substances IV. The water content influence on polyaniline crystal structure and conductivity. Synth Met 47:187–192. doi: 10.1061/0379-6779(92)90386-W CrossRefGoogle Scholar
  18. MacDiarmid AG (1996) Polyaniline and polypyrrole: where are we headed? Synth Met 84:27–34. doi: 10.1016/S0379-6779(97)80658-3 CrossRefGoogle Scholar
  19. Matveeva ES, Diaz Calleja R, Parkhutik VP (1995) Thermogravimetric and calorimetric studies of water absorbed in polyaniline. Synth Met 72:105–110. doi: 10.1016/0379-6779(94)02335-V CrossRefGoogle Scholar
  20. Moosvi SK, Majid K, Ara T (2016) Synthesis and characterization of PPY/K[Fe(CN)3(OH)(en)] nanocomposite: study of photocatalytic, sorption, electrical, and thermal properties. J Appl Polym Sci. doi: 10.1002/app43487 Google Scholar
  21. Ostwald MM, Qi B, Pellrgino J, Fadeev AG, Norris ID, Tsotsin TT, Sahimi M, Mattes BR (2006) Water sorption of acid-doped polyaniline powders and hollow fibers: equilibrium and kinetic response. Ind Eng Chem Res 45:6021–6031. doi: 10.1021/ie060163h CrossRefGoogle Scholar
  22. Rodrigues PC, de Souza GP, Da Motta Neto JD, Akcelrud L (2002) Thermal treatment and dynamic mechanical thermal properties of polyaniline. Polymer 43:5493–5499. doi: 10.1016/S0032-3861(02)00401-9 CrossRefGoogle Scholar
  23. Rudajevová A, Varga M, Prokeš J, Kopecká J, Stejskal J (2015) Thermal properties of conducting polypyrrole nanotubes. Acta Phys Pol A 128:730–736. doi: 10.12693/APhysPol/A.128.730 CrossRefGoogle Scholar
  24. Shen X, Viney Ch, Johnson ER, Wang Ch, Lu JQ (2013) Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat Chem 5:1035–1045. doi: 10.1038/nchem.1780 CrossRefGoogle Scholar
  25. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer. Pure Appl Chem 74:857–867. doi: 10.1351/pac200274050857 CrossRefGoogle Scholar
  26. Stejskal J, Trchová M, Bober P, Humpolíček P, Kašpárková V, Sapurina I, Shishov MA, Varga M (2015) Conducting Polymers: Polyaniline. Encycl Polym Sci Technol 1–44. doi: 10.1002/0471440264.pst640
  27. Tsavalas JG, Sundberg DC (2010) Hydroplasticization of polymers: model predictions and application to emulsion polymers. Langmuir 26:6960–6966. doi: 10.1021/ia9042.11e CrossRefGoogle Scholar
  28. Wassermann EF (1990) Invar: moment-volume instabilities in transition metals and alloys. In: Buschow KHJ, Wohlfarth EP (eds) Ferromagnetic Materials (Chap. 3), vol 5. Elsevier, North-Holland, Amsterdam, pp 237–322Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Alexandra Rudajevová
    • 1
  • Jan Prokeš
    • 2
  • Martin Varga
    • 2
  1. 1.Department of Condensed Matter Physics, Faculty of Mathematics and PhysicsCharles University in PraguePrague 2Czech Republic
  2. 2.Department of Macromolecular Physics, Faculty of Mathematics and PhysicsCharles University in PraguePrague 8Czech Republic

Personalised recommendations