Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 91–102 | Cite as

A microanalytical method based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry for multielemental determination: comparison with inductively coupled plasma optical emission spectrometry

  • Tiberiu FrentiuEmail author
  • Sinziana Butaciu
  • Eugen Darvasi
  • Michaela Ponta
  • Maria Frentiu
  • Dorin Petreus
Original Paper

Abstract

A microanalytical method based on small-sized electrothermal vaporization low power (15 W) and low Ar consumption (150 mL min−1) capacitively coupled Ar plasma microtorch and detection by optical emission spectrometry using a low-resolution microspectrometer was characterized for determination of As, Ag, Cd, Cu, Hg, Pb, Sb, Sn and Zn. Elements requiring usually either hydride (As, Sb, Sn) or cold vapor generation (Hg) were determined along with other elements using the completely miniaturized analytical system. A volume of 10 µL sample was vaporized on a Rh coil (1500 °C, 10 s), introduced into the plasma with the Ar flow followed by recording of 20 spectra episodes using the QE65 Pro microspectrometer. The emission spectrum of elements is simple, so that the coupling microtorch-microspectrometer with 0.4 nm full-width half maximum was adequate. The detection limits were in the range 1.5–40 ng mL−1, similar or better compared to those found in the reference method, inductively coupled plasma optical emission spectrometry. The new method complies with the requirements for environmental analyses and has been applied to determine elements in soil and sediment samples using the standard addition method with recovery and precision in the range 92–104% and 0.4–11.6%, respectively. The miniaturized instrumentation including the plasma microtorch is a promising alternative to inductively coupled plasma optical emission spectrometry with pneumatical nebulization.

Keywords

Electrothermal vaporization Radiofrequency capacitively coupled plasma Optical emission spectrometry Inductively coupled plasma optical emission spectrometry 

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI, Project No. PN-II-PT-PCCA-2011-3.2-0219 (Contract No. 176/2012).

Supplementary material

11696_2016_53_MOESM1_ESM.pdf (124 kb)
Supplementary material 1 (PDF 123 kb)

References

  1. Badiei HR, Lai B, Karanassios V (2012a) Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry. Spectrochim Acta Part B 77:19–30. doi: 10.1016/j.sab.2012.07.025 CrossRefGoogle Scholar
  2. Badiei HR, McEnaney J, Karanassios V (2012b) Bringing part of the lab to the field: on-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry. Spectrochim Acta Part B 78:42–49. doi: 10.1016/j.sab.2012.10.002 CrossRefGoogle Scholar
  3. Badiei HR, Liu C, Karanassios V (2013) Taking part of the lab to the sample: on-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry. Microchem J 108:131–138. doi: 10.1016/j.microc.2012.10.013 CrossRefGoogle Scholar
  4. Boumans PWJM (1991) Measuring detection limits in inductively coupled plasma optical emission spectrometry using the “SBR-RSDB approach”-I. A tutorial discussion of the theory. Spectrochim Acta Part B 46B:431–435. doi: 10.1016/0584-8547(91)80040-A CrossRefGoogle Scholar
  5. Broekaert JAC (2009) Innovation in plasma atomic spectrometry from the direct current arc to plasmas on a chip. Appl Spectrosc 62:227A–233A. doi: 10.1366/000370208785793335 CrossRefGoogle Scholar
  6. Butaciu S, Frentiu T, Senila M, Darvasi E, Cadar S, Ponta M, Petreus D, Etz R, Frentiu M (2016) Determination of Cd in food using an electrothermal vaporization capacitively coupled plasma microtorch optical emission microspectrometer: compliance with European legislation and comparison with graphite furnace atomic absorption spectrometry. Food Control 61:227–234. doi: 10.1016/j.food.cont.2015.09.040 CrossRefGoogle Scholar
  7. Capitan-Vallvey LF, Palma AJ (2011) Recent developments in handheld and portable optosensing—a review. Anal Chim Acta 696:27–46. doi: 10.1016/j.aca.2011.04.005 CrossRefGoogle Scholar
  8. Etz R, Petreus D, Frentiu T, Patarau T, Orian C (2015) An indirect method and equipment for temperature monitoring and control. Adv Electr Comput Eng 15:87–94. doi: 10.4316/AECE.2015.04012 CrossRefGoogle Scholar
  9. Foest R, Schidt M, Becker K (2006) Microplasmas, an emerging field of low-temperature plasma science and technology. Int J Mass Spectrom 248:87–102. doi: 10.1016/j.ijms.2005.11.010 CrossRefGoogle Scholar
  10. Frentiu T, Darvasi E, Senila M, Ponta M, Cordos E (2008) Preliminary investigation of a medium power argon radiofrequency capacitively coupled plasma as atomization cell in atomic fluorescence spectrometry of cadmium. Talanta 76:1170–1176. doi: 10.1016/j.talanta.2008.05.020
  11. Frentiu T, Petreus D, Senila M, Mihaltan AI, Darvasi E, Ponta M, Plaian E, Cordos EA (2011) Low power capacitively coupled plasma microtorch for simultaneous multielemental determination by atomic emission using microspectrometers. Microchem J 97:188–195. doi: 10.1016/j.microc.2010.09.003 CrossRefGoogle Scholar
  12. Frentiu T, Mihaltan AI, Darvasi E, Ponta M, Roman C, Frentiu M (2012) A novel analytical system with a capacitively coupled plasma microtorch and a gold filament microcollector for the determination of total Hg in water by cold vapour atomic emission spectrometry. J Anal At Spectrom 27:1753–1760. doi: 10.1039/c2ja30156c CrossRefGoogle Scholar
  13. Frentiu T, Mihaltan AI, Senila M, Darvasi E, Ponta M, Frentiu M, Pintican PB (2013) New method for mercury determination in microwave digested soil samples based on cold vapor capacitively coupled plasma microtorch optical emission spectrometry: comparison with atomic fluorescence spectrometry. Microchem J 110:545–552. doi: 10.1016/j.microc.2013.06.009 CrossRefGoogle Scholar
  14. Frentiu T, Butaciu S, Ponta M, Darvasi E, Senila M, Petreus D, Frentiu M (2014a) Simultaneous determination of As and Sb in soil using hydride generation capacitively coupled plasma microtorch optical emission spectrometry—comparison with inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 29:1880–1888. doi: 10.1039/c4ja00168k CrossRefGoogle Scholar
  15. Frentiu T, Darvasi E, Butaciu S, Ponta M, Petreus D, Mihaltan AI, Frentiu M (2014b) A miniaturized capacitively coupled plasma microtorch optical emission spectrometer and a Rh coiled-filament as small-sized electrothermal vaporization device for simultaneous determination of volatile elements from liquid microsamples: spectral and analytical characterization. Talanta 129:72–78. doi: 10.1016/j.talanta.2014.04.032 CrossRefGoogle Scholar
  16. Frentiu T, Butaciu S, Darvasi E, Ponta M, Senila M, Levei E, Frentiu M (2015a) Sono-induced cold vapor generation interfaced with capacitively coupled plasma microtorch optical emission spectrometry: analytical characterization and comparison with atomic fluorescence spectrometry. J Anal At Spectrom 30:1161–1168. doi: 10.1039/c5ja00014a CrossRefGoogle Scholar
  17. Frentiu T, Butaciu S, Darvasi E, Ponta M, Senila M, Petreus D, Frentiu M (2015b) Analytical characterization of a method for mercury determination in food using cold vapor capacitively coupled plasma microtorch optical emission spectrometry—compliance with European legislation requirements. Analytical Methods 7:747–752. doi: 10.1039/c4ay02161d CrossRefGoogle Scholar
  18. Frentiu T, Darvasi E, Butaciu S, Ponta M, Petreus D, Etz R, Frentiu M (2015c) Application of low-cost electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry for simultaneous determination of Cd and Pb in environmental samples. Microchem J 121:192–198. doi: 10.1016/j.microc.2015.03.009 CrossRefGoogle Scholar
  19. Gianchandani YB, Wright SA, Eun CK, Wilson CG, Mitra B (2009) Exploring microdischarges for portable sensing applications. Anal Bioanal Chem 395:559–575. doi: 10.1007/s00216-009-3011-6 CrossRefGoogle Scholar
  20. Goncalves DA, Gu JY, dos Santos MC, Jones BT, Donati GL (2015) Direct determination of chromium in empty medicine capsules by tungsten coil atomic emission spectrometry. J Anal At Spectrom 30:1395–1399. doi: 10.1039/c5ja00100e CrossRefGoogle Scholar
  21. Greda K, Jamroz P, Pohl P (2013) The improvement of the analytical performance of direct current atmospheric pressure glow discharge generated in contact with the small-sized liquid cathode after the addition of no-ionic surfactants to electrolyte solution. Talanta 108:74–82. doi: 10.1016/j.talanta.2013.02.049 CrossRefGoogle Scholar
  22. Greda K, Jamroz P, Jedryczko D, Pohl P (2015) On the coupling of hydride generation with atmospheric pressure glow discharge in contact with the flowing liquid cathode for the determination of arsenic, antimony and selenium with optical emission spectrometry. Talanta 137:11–17. doi: 10.1016/j.talanta.2014.11.073 CrossRefGoogle Scholar
  23. Hanna SN, Jones BT (2011) A review of tungsten coil electrothermal vaporization as a sample introduction technique in atomic spectrometry. Appl Spectrosc Rev 46:624–635. doi: 10.1080/05704928.2011.582659 CrossRefGoogle Scholar
  24. Jiang XM, Chen Y, Zheng CB, Hou XD (2014) Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry. Anal Chem 86:5220–5224. doi: 10.1021/500637p1 CrossRefGoogle Scholar
  25. Karanassios V (2004) Microplasmas for chemical analysis: analytical tools or research toys? Spectrochim Acta Part B 59:909–928. doi: 10.1016/j.sab.2004.04.005 CrossRefGoogle Scholar
  26. Luo D, Duan Y (2012) Microplasmas for analytical applications of lab-on-chip. Trends Anal Chem 39:254–266. doi: 10.1016/j.trac.2012.07.004 CrossRefGoogle Scholar
  27. Miclea M, Franzke J (2007) Analytical detectors based on microplasma spectrometry. Plasma Chem Plasma Process 27:205–224. doi: 10.1007//s11090-007-9056-4 CrossRefGoogle Scholar
  28. Mihaltan AI, Frentiu T, Ponta M, Petreus D, Frentiu M, Darvasi E, Marutoiu C (2013) Arsenic and antimony determination in non- and biodegradable materials by hydride generation capacitively coupled plasma microtorch optical emission spectrometry. Talanta 109:84–90. doi: 10.1016//j.talanta.2013.01.056 CrossRefGoogle Scholar
  29. Ministerial Order 756/1997. Monitorul Oficial 303/bis/06.11.1997 (in Romanian)Google Scholar
  30. Pena-Pereira F, Costas-Mora I, Romero V, Lavilla I, Bendicho C (2011) Advances in miniaturized UV-Vis spectrometric systems. Trends Anal Chem 30:1637–1648. doi: 10.1016/j.trac.2011.04.018 CrossRefGoogle Scholar
  31. Slachcinski M (2014) Recent achievements in sample introduction systems for use in chemical vapor generation plasma optical emission and mass spectrometry: from macro- to microanalytics. Appl Spectrosc Rev 49:271–321. doi: 10.1080/05704928.2013.823547 CrossRefGoogle Scholar
  32. Tendero C, Tixler C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B 61:2–30. doi: 10.1016/j.sab.2005.10.003 CrossRefGoogle Scholar
  33. Vidal L, Silva SG, Canals A, Nobrega JA (2016) Tungsten coil atomic emission spectrometry combined with dispersive liquid-liquid microextraction: a synergistic association for chromium determination in water samples. Talanta 148:602–608. doi: 10.1016/j.talanta.2015.04.023 CrossRefGoogle Scholar
  34. Weagant S, Chen V, Karanassios V (2011) Battery-operated, argon-hydrogen microplasma on hybrid, postage stamp-sized plastic-quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer. Anal Bioanal Chem 401:2865–2880. doi: 10.1007/s00216-011-5372-x CrossRefGoogle Scholar
  35. Weagant S, Dulai G, Li L, Karanassios V (2015) Characterization of rapidly-prototyped, battery-operated, argon-hydrogen microplasma on a hybrid chip for elemental analysis of microsamples by portable optical emission spectrometry. Spectrochim Acta Part B 106:75–80. doi: 10.1016/j.sab.2015.01.009 CrossRefGoogle Scholar
  36. Wu P, Wen XD, He L, He Y, Chen MY, Hou XD (2008) Evaluation of tungsten coil electrothermal vaporization-Ar/H2 flame atomic fluorescence spectrometry for determination of eight traditional hydride-forming elements and cadmium without chemical vapor generation. Talanta 74:505–511. doi: 10.1016/j.talanta.2007.06.013 CrossRefGoogle Scholar
  37. Yang T, Gao DX, Yu YL, Chen ML, Wang JH (2015) Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exalted breath. Talanta 146:603–608. doi: 10.1016/j.talanta.2015.07.074 CrossRefGoogle Scholar
  38. Yuan X, Tang J, Duan Y (2011) Microplasma technology and its applications in analytical chemistry. Appl Spectrosc Rev 46:581–605. doi: 10.1080/05704928.2011.604814 CrossRefGoogle Scholar
  39. Yuan X, Yang G, Ding Y, Li X, Zhan X, Zhoa Z, Duan Y (2014) An effective analytical system based on a pulsed direct current microplasma source for ultra-trace mercury determination using gold amalgamation cold vapor atomic emission spectrometry. Spectrochim Acta Part B 93:1–7. doi: 10.1016/j.sab.2013.12.009 CrossRefGoogle Scholar
  40. Zhang LX, Marcus RK (2016) Mass spectra of diverse organic species utilizing the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source. J Anal At Spectrom 31:145–151. doi: 10.1039/c5ja00376h CrossRefGoogle Scholar
  41. Zhang S, Luo H, Peng MT, Tian YF, Hou XD, Jiang XM, Zheng CB (2015) Determination of Hg, Fe, Ni, and Co by miniaturized optical emission spectrometry integrated with flow injection photochemical vapor generation and point discharge. Anal Chem 2015:10712–10718. doi: 10.1021/acs.analchem.5b02820 CrossRefGoogle Scholar
  42. Zhirkov AA, Yagov VV, Vlasova AA, Zuev BK (2015) A microplasma analyzer for the determination of alkali and alkaline-earth metals in small volumes of samples of complex phase composition. J Anal Chem 70:1468–1474. doi: 10.1134/S1061934815120163 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Tiberiu Frentiu
    • 1
    Email author
  • Sinziana Butaciu
    • 1
  • Eugen Darvasi
    • 1
  • Michaela Ponta
    • 1
  • Maria Frentiu
    • 2
  • Dorin Petreus
    • 3
  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.National Institute for Research and Development of Optoelectronics Bucharest-Research Institute of Analytical InstrumentationCluj-NapocaRomania
  3. 3.Faculty of Electronics, Telecommunications and Information TechnologyTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations