Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 29–40 | Cite as

The state of treatment approach and diagnostics in Canavan disease with focus on the determination of N-acetylasparic acid

  • Helena JurdákováEmail author
  • Renáta Górová
  • Gabriela Addová
  • Darina Behúlová
  • Ivan Ostrovský
Original Paper

Abstract

This article is aimed to current state of diagnostic and treatment of Canavan disease. Canavan disease is an inherited metabolic disease caused by the absence of enzyme aspartoacylase. Disruption of N-acetylaspartic acid metabolism results in its accumulation in the brain and subsequently in body fluids. It is characterized by spongy degeneration of the white matter in the brain resulting in severe psychomotor handicaps. An early diagnostic of Canavan disease is desirable to start a treatment before irreversible damage to slowing the progress and improving the quality of patient´s life. The present therapy consists of supportive basis and is focused on a symptomatic alleviation via drug treatment or dietary supplementation, and a gene therapy also seems to be a promising treatment for the future. Diagnostic methods are based on characteristic pathological changes of white matter examination, enzymatic assay for ASPA activity, molecular diagnostic approaches on gene level, and methods based on the determination of N-acetylaspartic acid as a marker of Canavan disease in various biological samples. Gas chromatography, liquid chromatography, and capillary electrophoresis are the most used analytical methods for the NAA determination mainly in urine and CSF. Hyphenated chromatographic and tandem mass spectrometric methods utilized recently provide more sensitive approach, advantageous for matrices with lower NAA levels.

Keywords

Canavan disease N-acetylaspartic acid Inborn error of metabolism Gas chromatography Liquid chromatography Capillary electrophoresis 

References

  1. Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (Van Bogaert and Bertrand type; Canavan’s disease): a review. Hum Pathol 4(3):331–347CrossRefGoogle Scholar
  2. Ahmed SS, Gao G (2013) Gene therapy for Canavan´s disease takes a step forward. Mol Ther 21:505–506. doi: 10.1038/mt.2013.25 CrossRefGoogle Scholar
  3. Ahmed SS, Gao G (2015) Making the white matter matters: progress in understanding Canavan´s disease and therapeutic interventions througr eight decades. J Inherit Metab Dis Rep 19:11–22. doi: 10.1007/8904_2014_356 Google Scholar
  4. Al-Dirbashi OY, Rashed MS, Al-Mokhadab MA, Al-Qahtani K, Al-Sayed MAA, Kurdi W (2007a) Stable isotope dilution analysis of N-acetylaspartic acid in urine by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 21:898–902. doi: 10.10002/bmc.815 CrossRefGoogle Scholar
  5. Al-Dirbashi OY, Rashed MS, Al-Qahtani K, Al-Mokhadab MA, Kurdi W, Al-Sayed MAA (2007b) Journal of Inherited Metabolic Diseases 30:612. doi: 10.1007/s10545-007-0635-6
  6. Al-Dirbashi OY, Kurdi W, Imtiaz F, Ahmad AM, Al-Sayed M, Tulbah M, Al-Nemer M, Rashed MS (2009) Reliable prenatal diagnosis of Canavan disease by measuring N-acetylaspartate in amniotic fluid using liquid chromatography tandem mass spectrometry. Prenat Diagn 29:477–480. doi: 10.1002/pd.2223 CrossRefGoogle Scholar
  7. Arai K, Fukushima T, Tomiya M, Mitsuhashi S, Sasaki T, Toyo´oka T (2008) Simultaneous determination of N-acetylaspartylglutamate and N-acetylaspartate in rat brain homogenate using high-performance liquid chromatography with pre-column fluorescence derivatization. J Chromatogr B 875:358–362. doi: 10.1016/j.jchromb.2008.09.010 CrossRefGoogle Scholar
  8. Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM (2010) Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 33:195–210. doi: 10.1007/s10545-010-9100-z CrossRefGoogle Scholar
  9. Ashrafi MR, Tavasoli AR, Katibeh P, Aryani O, Vafaee-Shahi M (2015) A novel mutation in aspartoacylase gene; Canavan disease. Iran J Child Neurol 9(4):54–57Google Scholar
  10. Assadi M, Janson C, Wang D-J, Goldfarb O, Suri N, Bilaniuk L, Leone P (2010) Lithium citrate reduces excessive intra-cerebral N-acetylaspartate in Canavan disease. Eur J Paediatr Neurol 14:354–359. doi: 10.1016/j.ejpn.2009.11.006 CrossRefGoogle Scholar
  11. Avdinli N, Caliskan M, Calay M, Ozmen M (1998) Use of localized proton nuclear magnetic resonance spectroscopy in Canavan’s disease. Turk J Pediatr 40(4):549–557Google Scholar
  12. Banker BQ, Victor H (1979) Spongy degradation of infancy. In: Goodman RM, Motulsky AG (eds). Genetic Diseases Among Ashkenazi Jews. Raven Press, New York, p 201Google Scholar
  13. Barash V, Flhor D, Morag B, Boneh A, Elpeleg ON, Gilon C (1991) A radiometric assay for aspartoacylase activity in human fibroblasts: application for the diagnosis of Canavan’s disease. Clin Chim Acta 201(3):175–181CrossRefGoogle Scholar
  14. Barbas C, García A, de Miguel L, Simó C (2002) Evaluation of filter paper collection of urine samples for detection and measurement of organic acidurias by capillary electrophoresis. J Chromatogr B 780:73–82. doi: 10.1016/S1570-0232(02)00415-4 CrossRefGoogle Scholar
  15. Barker PB, Bryan RN, Kumar AJ, Naidu S (1992) Proton NMR spectroscopy of Canavan’s disease. Neuropediatrics 23(5):263–267CrossRefGoogle Scholar
  16. Bartalini G, Margollicci M, Balestri P, Farnetani MA, Cioni M, Fois A (1992) Biochemical diagnosis of Canavan disease. Child´s Nerv Syst 8:468–470CrossRefGoogle Scholar
  17. Baslow MH (2003) Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J Mol Neurosci 21(3):185–189CrossRefGoogle Scholar
  18. Baslow MH, Guilfoyle DN (2013) Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie 95(4):946–956. doi: 10.1016/j.biochi.2012.10.023 CrossRefGoogle Scholar
  19. Bennett MJ, Gibson KM, Sherwood WG, Divry P, Rolland MO, Elpeleg ON, Rinaldo P, Jakobs C (1993) Reliable prenatal diagnosis of Canavan disease (aspartoadylase deficiency): comparison of enzymatic and metabolite analysis. J Inherit Metab Dis 16(5):831–836CrossRefGoogle Scholar
  20. Brismar J, Brismar G, Gascon G, Ozand P (1990) Canavan disease: CT and MR imaging of the brain. Am J Neuroradiol 11(4):805–810Google Scholar
  21. Burlina AP, Ferrari V, Divry P, Gradowska W, Jakobs C, Bennett MJ, Sewell AC, Dionisi-Vici C, Burlina AB (1999) N-acetylasparylglutamate in Canavn disease: an adverse effector? Eur J Pediatr 158:406–409CrossRefGoogle Scholar
  22. Burri R, Bigler P, Straehl P, Posse S, Colombo J-P, Herschkowitz N (1990) Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 15(10):1009–1016CrossRefGoogle Scholar
  23. Canavan MM (1931) Schilder´s encephalotis periaxialis diffusa. Arch Neurol Psychiatry 25(2):299–308CrossRefGoogle Scholar
  24. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud AB, Marie C (2001) N-acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415CrossRefGoogle Scholar
  25. Demougeot C, Marie C, Giroud M, Beley A (2004) N-acetylaspartate: a literature review of animal research on brain ischaemia. J Neurochem 90:776–783. doi: 10.1111/j.1471-4159.2004.02583.x CrossRefGoogle Scholar
  26. Divry P, Vianey-Liaud C, Gay C, Macabeo V, Rapin F, Echenne B (1988) N-acetylaspartic aciduria: report of three new cases in children with a neurological syndrome associating macrocephaly and leukodystrophy. J Inherit Metab Dis 11(3):307–308CrossRefGoogle Scholar
  27. Elpeleg ON, Shaag A (1999) The spectrum of mutations of the aspartoacylase gene in Canavan disease in non-Jewish patients. J Inherit Metabol Dis 22(4):531–534CrossRefGoogle Scholar
  28. Elpeleg ON, Anikster Y, Barash V, Branski D, Shaag A (1994) The frequency of the c854 mutation in the spartoacylase gene in Ashkenazi Jewish in Israel. Am J Hum Genet 55:287–288Google Scholar
  29. Elting JW, Sulter G, Langedijk M, Luijckx GJ, Teelken A, De Keyser J (2004) N-acetyl-aspartate: serum marker of reprefusion in ischemic stroke. J Stroke Cerebrovasc Dis 13(6):254–258CrossRefGoogle Scholar
  30. Engelbrecht V, Rassek M, Gärtner J, Kahn T, Mödder U (1995) Magnetic resonance tomography and localized proton spectroscopy in 2 siblings with Canavan’s disease. Rofo 163(3):238–244CrossRefGoogle Scholar
  31. Feigenbaum A, Moore R, Clarke J, Hewson S, Chitayat D, Ray PN, Stockley TL (2004) Canavan disease: carrier-frequency determination in the Ashkenazi Jewish population and development of novel molecular diagnostic assay. Am J Med Genet 124A:142–147. doi: 10.1002/ajmg.a.20334 CrossRefGoogle Scholar
  32. Finisterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39(4):223–235. doi: 10.1016/j.pediatrneurol.2008.07.013 CrossRefGoogle Scholar
  33. Fukushima T, Arai K, Tomiya M, Mitsuhashi S, Sasaki T, Santa T, Imai K, Toyo´oka T (2008) Fluorescence determination of N-acetylaspartic acid in the rat cerebrum homogenate using high-performance liquid chromatography with pre-column fluorescence derivatization. Biomed Chromatogr 22:100–105. doi: 10.1002/bmc.902 CrossRefGoogle Scholar
  34. Galli V, Garcia A, Saavedra L, Barbas C (2003) Capillary electrophoresis for short-chain organic acids and inorganic anions in different samples. Electrophoresis 24:1951–1981CrossRefGoogle Scholar
  35. García A, Barbas C, Aguilar R, Castro M (1998) Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem 44(9):1905–1911Google Scholar
  36. Garg U, Dasouki M (2006) Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clin Biochem 39:315–332. doi: 10.1016/j.clinbiochem.2005.12.009 CrossRefGoogle Scholar
  37. Globus JH, Strauss I (1928) Progressive degenarative subcortical encephalopathy (Schilder´s disease). Arch Neurol Psychiatry 20(6):1190–1228CrossRefGoogle Scholar
  38. Goodman RM (1979) Genetic disorders among Jewish people. Jhon Hopkins University Press, Baltimore, p 109Google Scholar
  39. Gordon N (2000) Canavan disease: a review of recent developments. Eur J Pediatr Neurol 5:65–69CrossRefGoogle Scholar
  40. Grodd W, Krägeloh-Mann I, Klose U, Sauter R (1991) Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology 181(1):173–181CrossRefGoogle Scholar
  41. Hagenfeldt L, Bollfren I, Venizelos N (1987) N-acetylaspartic aciduria due to aspartoacylase deficiency—a new aetiology of childhood leukodystrophy. J Inherit Metab Dis 10(2):135–141CrossRefGoogle Scholar
  42. Harte MK, Powell SB, Reynolds LM, Swerdlow NR, Geyer MA, Reynolds GP (2004) Reduced N-acetylaspartate in the temporal cortex of rats reared in isolation. Biol Psychiatry 56:296–299. doi: 10.1016/j.biopsych.2004.06.009 CrossRefGoogle Scholar
  43. Harte MK, Bachus SB, Reynolds GP (2005) Increased N-acetylaspartate in rat striatum following long-term administration of haloperidol. Schizophr Res 75:303–308. doi: 10.1016/j.schres.2004.11.001 CrossRefGoogle Scholar
  44. Hoshino H, Kubota M (2014) Canavan disease: clinical feature and recent advaces in research. Pediatr Int 56:477–487CrossRefGoogle Scholar
  45. Inoue Y, Kuhara Y (2004) Rapid and sensitive screening for and chemical diagnosis of Canavan disease by gas chromatography-mass spectrometry. J Chromatogr B 806:33–39CrossRefGoogle Scholar
  46. Jaarsma D, van der Duin V, Korf J (1994) N-acetylaspartate and N-acetylaspartylglutamate levels in Alzheimer’s disease post-mortem brain tissue. J Neurol Sci 127(2):230–233CrossRefGoogle Scholar
  47. Jacobson KB (1959) Studies on the role of N-acetylaspartic acid in mammalian brain. J Gen Physiol 43(2):323–333CrossRefGoogle Scholar
  48. Jakobs C, ten Brink HJ, Stellaard F (1990) Prenatal diagnosis of inherited metabolic disorders by quantitation of characteristic metabolites in amniotic fluid: facts and future. Prenat Diagn 10:265–271CrossRefGoogle Scholar
  49. Jakobs C, ten Brink HJ, Langelaar SA, Zee T, Stellaard F, Macek M, Sršňová K, Sršeň Š, Kleijer WJ (1991) Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: accurate postnatal diagnosis and the potential for prenatal diagnosis of Canavan disease. J Inherit Metab Dis 14:653–660CrossRefGoogle Scholar
  50. Jakobs C, ten Brink HJ, Divry P, Rolland MO (1992) Prenatal diagnosis of Canavan disease. Eur J Pediatr 151(3):620CrossRefGoogle Scholar
  51. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, Wang DJ, Shera D, Hurh P, Rupin J, Saslow E, Goldfarb O, Goldberg M, Larijani G, Sharrar W, Liouterman L, Camp A, Kolodny E, Samulski J, Leone P (2002) Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human Brian. Hum Gene Ther 13(11):1391–1412CrossRefGoogle Scholar
  52. Janson CG, Assadi M, Francis J, Bilaniuk L, Shera D, Leone P (2005) Lithium citrate for Canavan disease. Pediatr Neurol 33(4):235–243. doi: 10.1016/j.pediatrneurol.2005.04.015 CrossRefGoogle Scholar
  53. Janson CG, McPhee SW, Francis J, Shera D, Assadi M, Freese A, Hurh P, Haselgrove J, Wang DJ, Bilaniuk L, Leone P (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37(4):209–221. doi: 10.1055/s-2006-924734 CrossRefGoogle Scholar
  54. Jasperse B, Jakobs C, Eikelenboom MJ, Dijkstra CD, Uitdehaag BMJ, Barkhof F, Polman CH, Teunissen CE (2007). N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry. J Neurol 254:631–637. doi: 10.1007/s00415-006-0415-5 CrossRefGoogle Scholar
  55. Karimzadeh P, Jafari N, Nejad Biglari H, Rahimian E, Ahmabadadi F, Nemati H, Nasehi MM, Ghofrani M, Mollamohammadi M (2014) The clinical features and diagnosis of Canavan´s Disease: a case series of Iranian patients. Iran J Child Neurol 8(4):66–71Google Scholar
  56. Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Canavan disease: from spongy degeneration to molecular analysis. Nat Genet 5:118–123CrossRefGoogle Scholar
  57. Kaul R, Balamurugan K, Gao GP, Matalon R (1994a) Canavan disease: genomic organization and localization of human ASPA to 17p13-ter and conservation of the ASPA gene during evolution. Genomics 21:364–370CrossRefGoogle Scholar
  58. Kaul R, Gao GP, Aloya M, Balamurugan K, Petrosky A, Michals K, Matalon R (1994b) Canavan disease: mutations among Jewish and non-Jewish patients. Am J Hum Genet 55:34–41Google Scholar
  59. Kaul R, Gao GP, Matalon R, Aloya M, Su Q, Jin M, Johnson AB, Schutgens RB, Clarke JT (1996) Identification and expression of eight novel mutations among non-Jewish patients with Canavan disease. Am J Hum Genet 59:95–102Google Scholar
  60. Kelley RI (1993) Prenatal diagnosis of N-acetyl-L-aspartate in amniotic fluid. J Inherit Metab Dis 16(5):918–919CrossRefGoogle Scholar
  61. Kelley RI, Stamas JN (1992) Quantification of N-acetyl-L-asparic acid in urine by isotope dilution gas chromatography-mass spectrometry. J Inherit Metab Dis 15(1):97–104CrossRefGoogle Scholar
  62. Koller KJ, Zaczek R, Coyle JT (1984) N-acetyl-aspartyl-glutamate: redional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem 43(4):1136–1142CrossRefGoogle Scholar
  63. Kolodziejdzyk K, Hamilton NB, Wade A, Káradóttir R, Attwell D (2009) The effect of N-acetyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brian 132:1496–1508. doi: 10.1093/brain/awp087 CrossRefGoogle Scholar
  64. Korf J, Veenma-van der Duin L, Venema K, Wolf JH (1991) Automated precolumn fluorescence labeling by carbodiimide activation of N-acetylaspartate and N-acetylaspartylglutamate applied to an HPLC brain tissue analysis. Anal Biochem 196(2):350–355CrossRefGoogle Scholar
  65. Kronn D, Oddoux C, Phillips J, Ostrer H (1995) Prevalence of Canavan disease heterozygotes in the New York metropolitan Ashkenazi Jewish population. Am J Hum Genet 57:1250–1252Google Scholar
  66. Kumar S, Mattan NS, de Velis J (2006) Canavan disease: a white matter disorder. Mental Retard Dev Disabil Res Rev 12(2):157–165CrossRefGoogle Scholar
  67. Kvittingen EA, Guldal G, Børsting S, Skalpe IO, Stokke O, Jellum E (1986) N-acetylaspartic aciduria in a child with a progressive cerebral atrophy. Clin Chim Acta 158(3):217–227CrossRefGoogle Scholar
  68. Lehotay DC, Hail P, Lepage J, Eichhorst JC, Etter ML, Greenberg CR (2011) LC-MS/MS progress in newborn screening. Clin Biochem 44:21–31. doi: 10.1016/j.clinbiochem2010.08.007 CrossRefGoogle Scholar
  69. Leis JH, Ozand PT, Al Odaib A, Gleispach H (1992) Quantitative measurement of N-acetyl-l-aspartic acid in urine by gas chromatography with negative-ion chemical ionization mass spectrometry. J Chromatogr B 578:116–119CrossRefGoogle Scholar
  70. Leone P, Janson CG, Bilaniuk L, Wang Z, Sorgi F, Huang L, Matalon R, Kaul R, Zeng Z, Freese A, Mc Phee SW, Mee E, During MJ (2000) Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 48(1):27–38CrossRefGoogle Scholar
  71. Leone P, Shera D, McPhee SWJ, Francis JS, Kolodny EH, Bilaniuk LT, Wang D, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D, During MJ, Samulski RJ, Janson CG (2012) Long–term follow-up after gene therapy for Canavan Disease. Sci Transl Med 4(165):165. doi: 10.1126/scitranslmed CrossRefGoogle Scholar
  72. Lin SN, Slopis JM, Butler IJ, Caprioli RM (1995) In vivo microdialysis and gas chromatography/mass spectrometry for studies on release of N-acetylaspartylglutamate nad N-acetylaspartate in rat brain hypothalamus. J Neurosci Methods 62(1–2):199–205CrossRefGoogle Scholar
  73. Liu A, Kushnir MM, Roberts WL, Pasquali M (2004) Solid phase extraction procedure for urinary organic acid analysis by gas chromatography mass spectrometry. J Chromatogr B 806:283–287. doi: 10.1016/j.jchromb.2004.03.048 CrossRefGoogle Scholar
  74. Ma D, Zhang J, Sugahara K, Ageta T, Nakayama K, Kodama H (1999) Simultaneous determination of N-acetylaspartic acid, N-acetylglutamic acid, and N-acetylaspartylglutamic acid in whole brain of 3-mercaptopropionic acid-treated rats using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 276:124–128CrossRefGoogle Scholar
  75. Madhavarao CN, Hammer JA, Quarles RH, Namboodiri MA (2002) A radiometric assay for aspartoacylase activity in cultured oligodendrocytes. Anal Biochem 308(2):314–319. doi: 10.1016/S0003-2697(02)00225-7 CrossRefGoogle Scholar
  76. Madhavarao CN, Arun P, Anikster Y, Mog SR, Staretz-Chacham O, Moffett JR, Grunberg NE, Gahl WA, Namboodiri AMA (2009) Glyceryl triacetate for Canavan disease: a low-dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model. J Inherit Metab Dis 32:640–650. doi: 10.1007/s10545-009-1155-3 CrossRefGoogle Scholar
  77. Marcucci F, Mussini E (1966) A method for the gas-chromatographic analysis of N-acetylaspartic acid in brain. J Chromatogr A 25:11–14CrossRefGoogle Scholar
  78. Marks HG, Caro PA, Wang ZY, Detre JA, Bogdan AR, Gusnard DA, Zimmerman RA (1991) Use of computed tomography, magnetic resonance imaging, and localized 1H magnetic resonance spectroscopy in Canavan’s disease: a case report. Ann Neurol 30(1):106–110CrossRefGoogle Scholar
  79. Matalon R (1997) Canavan disease: diagnosis and molecular analysis. Genetic Test 1(1):21–25Google Scholar
  80. Matalon R, Michals-Matalon K (1998) Molecular basis of Canavan disease. Eur J Pediatr Neurol 2:69–76CrossRefGoogle Scholar
  81. Matalon R, Michals-Matalon K (1999) Prenatal diagnosis of Canavan disease. Prenat Diagn 19:669–670CrossRefGoogle Scholar
  82. Matalon R, Michals-Matalon K (2011) Canavan disease. GeneReviews® [Internet], http://www.ncbi.nlm.nih.gov/books/NBK1234/, University of Washington, Seattle, WA, 1993-2016. Last update: August 11, 2011
  83. Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. J Inherit Metab Dis 29(2):463–471Google Scholar
  84. Matalon R, Michals K, Gashkoff P, Kaul R (1992) Prenatal diagnosis of Canavan disease. J Inherit Metab Dis 15:392–394CrossRefGoogle Scholar
  85. Matalon R, Kaul R, Michals K (1993) Canavan disease: biochemical and molecular studies. J Inherit Metab Dis 16(4):744–752CrossRefGoogle Scholar
  86. Matalon R, Michals K, Kaul R (1995) Canavan disease: from spongy degeneration to molecular analysis. J Pediatr 127(4):511–517CrossRefGoogle Scholar
  87. Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri AMA (2005) Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther 315:297–303. doi: 10.1124/jpet.105.087536 CrossRefGoogle Scholar
  88. Mattan NS, Ghiani CA, Lloyd M, Matalon R, Bok D, Casaccia P, de Vellis J (2010) Aspartoacylase defficiency affects early postnatal development of oligodendrocytes and myelination. Neurol Dis 40:432–443. doi: 10.1016/j.nbd.2010.07.003 Google Scholar
  89. Menkes J, Sarnat HB, Maria BL (2006) Child Neurology, 7th edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  90. Miller BL (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4(2):47–52CrossRefGoogle Scholar
  91. Miyake M, Kakimoto Y (1981) Developmental changes of N-acetyl-l-aspartic acid, N-acetyl-α-aspartylglutamic acid and β-citryl-l-glutamic acid in different brain regions nad spinal cords of rat and guinea pig. J Neurochem 37(4):1064–1067CrossRefGoogle Scholar
  92. Miyake M, Kakimoto Y, Sorimachi M (1981) A gas chromatographic method for the determination of N-acetyl-l-aspartic acid, N-acetyl-α-aspartylglutamic acid and β-citryl-l-glutamic acid and their distributions in the brain and other organs of various species of animals. J Neurochem 36(3):804–819CrossRefGoogle Scholar
  93. Miyake M, Morino H, Mizobuchi M, Kakimoto Y (1982) N-acetyl-l-aspartic acid, N-acetyl-α-aspartylglutamic acid and β-citryl-l-glutamic acid in human urine. Clin Chim Acta 120(1):119–126CrossRefGoogle Scholar
  94. Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri AMA (2006) N-acetylaspartate: a unique neuronal molecule in the central nervous system. Advances in Experimental Medicine and Biology, 576, New York, NY, USA, Springer US. doi: 10.1007/0-387-30172-0
  95. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA (2007) N-acetylaspartate in CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131. doi: 10.1016/j.pneurobio.2006.12.003 CrossRefGoogle Scholar
  96. Namboodiri AMA, Arun P, Mathew R, Ariyannur PS, Hershfield J, Moffett JR, Madhavarao CN (2006) Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol 252(1–2):216–223. doi: 10.1016/j.mce.2006.03.016 CrossRefGoogle Scholar
  97. Nowell MA, Grossman RI, Hackney DB, Zimmerman RA, Goldberg HI, Bilaniuk LT (1988) MR imaging of white matter disease in children. Am J Roentgenol 151(2):359–365CrossRefGoogle Scholar
  98. Nudmamud S, Reynolds LM, Reynolds GP (2003) N-acetylaspartate and N-acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study. Biol Psychiatry 53:1138–1141. doi: 10.1016/S0006-3223(02)01742-0 CrossRefGoogle Scholar
  99. Nyhan WL, Barshop BA, Al-Aqeel AI (2012) Canavan disease/aspartoacylase deficiency. Atlas of Inherited Metabolic Diseases, 3rd edition (pp 811–818), London, UK: Hodder ArnoldGoogle Scholar
  100. Poddar NK, Zano S, Natarajan R, Yamamoto B, Viola RE (2014) Enhanced brain distribution of modified aspartoacylase. Mol Genet Metab 113:219–224. doi: 10.1016/j.ymgme.2014.07.002 CrossRefGoogle Scholar
  101. Porter BE, Tennekoon G (2000) Myelin and disorders that affect the formation and maintenance of this sheat. Mental Retard Dev Disabil Res Rev 6:47–58CrossRefGoogle Scholar
  102. Rolland MO, Divry P, Mandon G, Thoulon JM, Fiumara A, Mathieu M (1993) First-trimester prenatal diagnosis of Canavan disease. J Inherit Metab Dis 16:581–583CrossRefGoogle Scholar
  103. Ruggieri M, Serpino C, Ceci E, Sciruicchio V, Franco G, Pica C, Trojano M, Livrea P, de Tommaso M (2012) Serum levels of N-acetylaspartate in Huntington´s disease: preliminary results. Mov Disord 27(2):329–330. doi: 10.1002/mds.23974 CrossRefGoogle Scholar
  104. Rushton AR, Shaywitz BA, Dumen CC, Geehr RB, Manuelidis EE (1981) Computed tomography in the diagnosis of Canavan’s disease. Ann Neurol 10(1):57–60CrossRefGoogle Scholar
  105. Sager TN, Laursen H, Hansen AJ (1995) Changes in N-acetyl-aspartate content during focal and global brain ischemia of the rat. J Cereb Blood Flow Metab 15:639–646CrossRefGoogle Scholar
  106. Schrober H, Luetschg J, Hoeliner I, Kalb S, Simma B (2011) Canavan disease: a novel mutation. Pediatic Neurology 45:256–258. doi: 10.1016/j.pediatrneurol.2011.06.011 CrossRefGoogle Scholar
  107. Segel R, Anikster Y, Zevin S, Steinberg A, Gahl WA, Fisher D, Staretz-Chacham O, Zimran A, Altarescu G (2011) A safety trial of high dose glyceryl triacetate for Canavan disease. Mol Genet Metab 103:203–206. doi: 10.1016/j.ymgme.2011.03.012 CrossRefGoogle Scholar
  108. Shaag A, Anikster Y, Christensen E, Glustein JZ, Fois A, Michelakakis H, Nigro F, Pronicka E, Ribes A, Zabot MT, Elpeleg ON (1995) The molecular basis of Canavan (aspartoacylase deficiency) disease in European non-Jewish patients. Am J Hum Genet 57:572–580Google Scholar
  109. Shah AJ, de la Flor R, Atkins A, Slone-Murphy J, Dawson LA (2008) Development and application of a liquid chromatography/tandem mass spectrometric assay for measurement of N-acetylaspartate, N-acetylaspartylglutamate and glutamate in brain slice superfusates and tissue extracts. J Chromatogr B 876:153–158. doi: 10.1016/j.jchromb.2008.10.012 CrossRefGoogle Scholar
  110. Sistermans EA, de Coo RFM, van Beerendonk HM, Poll-The B, T., Kleijer WJ, van Oost BA (2000) Mutation detection in the aspartoacylase gene in 17 patients with Canavan disease: four new mutations in the non-Jewish population. European Journal of Human Genetics 8:557–560Google Scholar
  111. Song Z, Ge D, Ishii K, Yamada H, Toriumi K, Watanabe H, Nabeshima T, Fukushima T (2012) Determination of N-acetylaspartic acid concentration in the mouse brain using HPLC with fluorescence detection. Biomed Chromatogr 26:147–151. doi: 10.1002/bmc.1639 CrossRefGoogle Scholar
  112. Stevens H, Jakobs C, de Jager AE, Cunningham RT, Korf J (1999) Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke. Eur J Clin Invest 29:6–11CrossRefGoogle Scholar
  113. Sugarman EA, Allitto BA (2001) Carrier testing for seven diseases common in the Ashkenazi Jewish population: implications for counseling and testing. Obstet Gynecol 97(74 Suppl 1):38–39. doi: 10.1016/S0029-7844(01)01234-0 Google Scholar
  114. Surendran S, Bamforth FJ, Chan A, Tyring SK, Goodman SI, Matalon R (2003a) Mild elevation of N-acetylaspartic acid and macrocephaly: diagnostic problem. J Child Neurol 18(11):809–812CrossRefGoogle Scholar
  115. Surendran S, Michals-Matalon K, Quast MJ, Tyring SK, Wei J, Ezell EL, Matalon R (2003b) Canavan disease: a monogenic trait with complex genomic interaction. Mol Genet Metab 80:74–80CrossRefGoogle Scholar
  116. Tallan HH (1957) Studies on the distribution of N-acetyl-l-aspartic acid in brain. J Biol Chem 224:41–45Google Scholar
  117. Tallan HH, Moore S, Stein WH (1956) N-acetyl-l-aspartic acid in brain. J Biol Chem 219:257–264Google Scholar
  118. Tavazzi B, Vagnozzi R, Di Pierro D, Amorini AM, Fazzina G, Signoretti S, Marmarou A, Caruso I, Lazzarino G (2000) Ion-pairing high-performance liquid chromatographic method for the detection of N-acetylaspartate and N-acetylglutamate in cerebral tissue extracts. Anal Biochem 277:104–108. doi: 10.1006/abio.1999.4386 CrossRefGoogle Scholar
  119. Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B (2005) Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem 38:997–1008. doi: 10.1016/j.clinbiochem.2005.08.002 CrossRefGoogle Scholar
  120. Toft PB, Geiss-Holtorff R, Rolland MO, Pryds O, Müller-Forell W, Christensen E, Lehnert W, Lou HC, Ott D, Hennig J, Henriksen O (1993) Magnetic resonance imaging in juvenile Canavan disease. Eur J Pediatr 152(9):750–753CrossRefGoogle Scholar
  121. Traeger EC, Rapin I (1997) The clinical course of Canavan disease. Pediatr Neurol 18(3):207–212CrossRefGoogle Scholar
  122. Ungar M, Goodman RM (1986) Spongy degradation of the brain in Israel: a retrospective study. Clinical Genetics Acta 158:217CrossRefGoogle Scholar
  123. van Bogaert L, Bertrand I (1949) Sur une idiotie familiale avec dégénérescence spongieuse de néuraxe. Acta Neurol Belg 49:572–587Google Scholar
  124. Vasquez NP, Crosnier de bellaistre-Bonose M, Lévêque N, Thioulouse E, Doummar D, Billette de Villemeur T, Rodriguez D, Couderc R, Robin S, Courderot-Masuyer C, Moussaa F (2015) Advances in the metabolic profiling of acidic compounds in children’s urines achieved by comprehensive two-dimensional gas chromatography. Journal of Chromatography B, 1002, 130–138. doi:  10.1016/j.jchromb.2015.08.006
  125. Wittsack HJ, Kugel H, Roth B, Heindel W (1996) Quantitative measurements with localized 1H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging 6(6):889–893CrossRefGoogle Scholar
  126. Yaron Y, Schwartz T, Mey-Raz N, Amit A, Lessing JB, Malcov M (2005) Preimplantation genetic diagnosis of Canavan disease. Fetal Diagn Ther 20:465–468CrossRefGoogle Scholar
  127. Zaki OK, El Abd HS, Mohamed SA, Zayed H (2015) Novel mutation in an Egyptian patient with infantile Canavan disease. Metabol Brain Dis pp 1–5. doi:  10.1007/s11011-015-9772-z
  128. Zano S, Malik R, Szucs S, Matalon R, Viola RE (2011) Modification of aspartoacylase for potential use in enzyme replacement therapy for the treatment of Canavan diasease. Mol Genet Metab 102:176–180. doi: 10.1016/j.ymgme.2010.10.012 CrossRefGoogle Scholar
  129. Zayed H (2015) Canavan disease: an Arab scenario. Gene 560:9–14. doi: 10.1016/j.gene.2015.02.009 CrossRefGoogle Scholar
  130. Zeng BJ, Wang ZH, Ribeiro LA, Leone P, De Gasperi R, Kim SJ, Raghavan S, Ong E, Pastores GM, Kolodny EH (2002) Identification and characterization of novel mutations of the aspartoacylase gene in non-Jewish patients with Canavan disease. J Inherit Metab Dis 25(7):557–570. doi: 10.1023/A:1022091223498 CrossRefGoogle Scholar
  131. Zhang H, Liu X, Gu X (2010) Two novel missense mutations in the aspartoacylase gene in a Chinese patient with congenital Canavan disease. Brain Dev 32:879–882. doi: 10.1016/j.braindev.2010.01.001 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Helena Jurdáková
    • 1
    Email author
  • Renáta Górová
    • 1
  • Gabriela Addová
    • 1
  • Darina Behúlová
    • 2
  • Ivan Ostrovský
    • 1
  1. 1.Institute of Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Laboratory MedicineComenius University Children´s HospitalBratislavaSlovakia

Personalised recommendations