Advertisement

Chemical Papers

, Volume 71, Issue 5, pp 999–1005 | Cite as

Dicarboxylic acids and hydroxy fatty acids in different species of fungi

  • Aleksandra Ostachowska
  • Piotr Stepnowski
  • Marek GołębiowskiEmail author
Short Communication
  • 106 Downloads

Abstract

Secondary metabolites of fungi can be responsible for allergies; therefore, the identification of compounds produced by these organisms is very important. Fungi produce large amounts of secondary metabolites, which belong to groups of chemicals such as: dicarboxylic acids, hydroxy acids, alcohols, hydrocarbons, esters, fatty acids, sterols, amino acids and mycotoxins. The presence of all these compounds in human proximity contributes to many diseases. Therefore, the aim of the study was a qualitative and quantitative analysis of hydroxy and dicarboxylic acids produced by fungi occurring in student hostel in Poland, in the province of Pomerania. The following species of fungi were subjected to extraction: Aspergillus niger, Aspergillus fumigatus, Aspergillus candidus, Rhizopus sp., Geotrichum candidum, and Penicillium chrysogenum. A mixture of ethyl acetate and methanol was used for the extraction. The obtained extracts were further analyzed by gas chromatography mass spectrometry (GC–MS). In all samples of fungi, the presence of a total of 22 acids, including 13 dicarboxylic and 9 hydroxy acids, was confirmed. Most acids (17 different acids) were identified in A. fumigatus. Only 10 acids were identified in the mycelium of G. candidum and A. niger. Acids which were identified in all samples of the mycelium were 22-hydroxydocosanoic acid, 24-hydroxytetracosanoic acid and adipic acid. The most abundant compounds were 22-hydroxydocosanoic acid in A. fumigatus, A. candidus, Rhizopus sp., G. candidum and P. chrysogenum, and succinic acid in A. niger. More experiments are needed to understand the physiological role of hydroxy and dicarboxylic acids. We hope that our results are an important contribution to further studies on the human health.

Keywords

Secondary metabolites Fungi Dicarboxylic acids Hydroxy fatty acids Human health 

Notes

Acknowledgements

Financial support was provided by the Polish Ministry of Research and Higher Education under the Grant DS 530-8617-D-594-16.

References

  1. Baker SE (2006) Aspergillus niger genomics: past, present and into the future. Med Mycol 44:17–21. doi: 10.1080/13693780600921037 CrossRefGoogle Scholar
  2. Bernstein EF, Underhill CB, Lakkakorpi J, Ditre CM, Uitto J, Yu RJ, Scott E (1997) Citric acid increases viable epidermal thickness and glycosaminoglycan content of sun-damaged skin. Dermatol Surg 23(8):689–694. Accession Number: WOS:A1997XP49100013Google Scholar
  3. Betsche T, Fretzdorff B (2005) Biodegradation of oxalic acid from spinach using cereal radicles. J Agric Food Chem 53:9751–9758. doi: 10.1021/jf051091s CrossRefGoogle Scholar
  4. Bohannon MB, Kleiman R (1975) Unsaturated C18 α-Hydroxy acids in Salvia nilotica. Lipids 10:703–706. doi: 10.1007/BF02532764 CrossRefGoogle Scholar
  5. Boutrou R, Guéguen M (2005) Interests in Geotrichum candidum for cheese technology. Int J Food Microbiol 102:1–20. doi: 10.1016/j.ijfloodmicro.2004.12.028 CrossRefGoogle Scholar
  6. Burchacka E, Potaczek P, Paduszyński P, Karłowicz-Bodalska K, Han T, Han S (2016) New effective azelaic acid liposomal gel formulation of enhanced pharmaceutical bioavailability. Biomed Pharmacother 83:771–775. doi: 10.1016/j.biopha.2016.07.014 CrossRefGoogle Scholar
  7. Calvo Ana M, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459. doi: 10.1128/MMBR.66.3.447-459.2002 CrossRefGoogle Scholar
  8. Figueredo LA, Cafarchia C, Otranto D (2011) Geotrichum candidum as etiological agent of horse dermatomycosis. Vet Microbiol 148(2–4):368–371. doi: 10.1016/j.vetmic.2010.09.025 CrossRefGoogle Scholar
  9. Gołębiowski M, Cerkowniak M, Urbanek A, Dawgul M, Kamysz W, Boguś MI, Sosnowska D, Stepnowski P (2014) Antimicrobial activity of untypical lipid compounds in the cuticular and internal lipids of four fly species. J Appl Microbiol 116:269–287. doi: 10.1111/jam.12370 CrossRefGoogle Scholar
  10. Gołębiowski M, Ostachowska A, Paszkiewicz M, Boguś MI, Włóka E, Ligęza-Żuber M, Stepnowski P (2016) Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media. Chem Papers. doi: 10.1515/chempap-2016-0067 (in press) Google Scholar
  11. Hastrup ACS, Jensen B, Clausen C, Green F (2006) The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula Species of fungi were identified on the basis of the morphological fungi. Holzforschung 60:339–345. doi: 10.1515/HF.2006.054 Google Scholar
  12. Hitchcock C, Rose A (1971) The stereochemistry of a-oxidation of fatty acids in plants: the configuration of biosynthetic long chain 2-hydroxy acids. Biochem J 125:1155–1156. Accession Number: WOS:A1971L159400031Google Scholar
  13. Kaya-Celiker H, Kumar Mallikarjunan P, Kaaya A (2015) Mid-infrared spectroscopy for discrimination and classification of Aspergillus spp. contamination in peanuts. Food Control 52:103–111. doi: 10.1016/j.foodcont.2014.12.013 CrossRefGoogle Scholar
  14. Keinanen MM, Korhonen LK, Martikainen PJ, Vartiainen T, Miettinen IT, Lehtola MJ (2003) Gas chromatographic-mass spectrometric detection of 2- and 3-hydroxy fatty scids as methyl esters from soil, sediment and biofilm. J Chromatogr B Anal Technol Biomed Life Sci 783(2):443–451. doi: 10.1016/S1570-0232(02)00713-4 CrossRefGoogle Scholar
  15. Kock JLF, Strauss CJ, Pohl CH, Nigam S (2003) The distribution of 3-hydroxy oxylipins in fungi. Prostaglandins Other Lipid Mediat 71(3–4):85–96. doi: 10.1016/S1098-8823(03)00046-7 CrossRefGoogle Scholar
  16. Kumar A, Shukla PK (2015) A monoclonal antibody against glycoproteins of Aspergillus fumigatus shows anti-adhesive potential. Microb Pathog 79C:24–30. doi: 10.1016/j.micpath.2015.01.003 CrossRefGoogle Scholar
  17. Laoteng K, Čertik M, Cheevadhanark S (2011) Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem Pap 65:97–103. doi: 10.2478/s11696-010-0097-4 CrossRefGoogle Scholar
  18. Liu H, Jia W, Zhang J, Pan Y (2008) GC-MS and GC-olfactometry analysis of aroma compounds extracted from Culture fluids of antrodia camphorata. World J Microbiol Biotechnol 24(8):1599–1602. doi: 10.1007/s11274-007-9614-1 CrossRefGoogle Scholar
  19. Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine vol 12, pp 307–340. ISBN 978-1-4419-8859-1Google Scholar
  20. Nagahashi G, Douds DD (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fung Biol 115(4–5):351–358. doi: 10.1016/j.funbio.2010.01.006 CrossRefGoogle Scholar
  21. Nielsen KF (2002) Building mould growth on building materials. Secondary Metabolites, Mycotoxins and Biomarkers. Biocentrum-DTU Technical University of Denmark, Lyngby, ISBN 87-88584-65-8Google Scholar
  22. Pottier I, Gente S, Vernoux JP, Guéguen M (2008) Safety assessment of dairy microorganisms: Geotrichum candidum. Int J Food Microbiol 126(3):327–332. doi: 10.1016/j.ijfoodmicro.2007.08.021 CrossRefGoogle Scholar
  23. Proksa B (2010) Talaromyces flavus and its metabolites. Chem Pap 64:696–714. doi: 10.2478/s11696-010-0073-z CrossRefGoogle Scholar
  24. Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13:236–301. doi: 10.1128/CMR.13.2.236-301.2000 CrossRefGoogle Scholar
  25. Schreier P, Drawert F, Junker A (1976) Identification of volatile constituents from grapes. J Agric Food Chem 24:331–338. doi: 10.1021/jf60204a032 CrossRefGoogle Scholar
  26. Schwarz M, Kopcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245. doi: 10.1016/j.phytochem.2004.06.035 CrossRefGoogle Scholar
  27. Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99(11):5104–5109. doi: 10.1016/j.biortech.2007.09.076 CrossRefGoogle Scholar
  28. Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112(2):225–230. doi: 10.1016/j.mycres.2007.08.021 CrossRefGoogle Scholar
  29. Siddiquee S, Al Azad S, Abu Bakar F, Naher L, Vijay Kumar S (2015) Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC–MS using two different capillary columns and solvents. J Saudi Chem Soc 19(3):243–256. doi: 10.1016/j.jscs.2012.02.007 CrossRefGoogle Scholar
  30. Silva BM, Andrade PB, Mendes GC, Seabra RM, Ferreira MA (2002) Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. J Agric Food Chem 50:2313–2317. doi: 10.1021/jf011286+ CrossRefGoogle Scholar
  31. Stodola FH, Deinema MH, Spencer JFT (1967) Extracellular lipids of yeasts. Bacteriol Rev 31:194–213Google Scholar
  32. Terninko II, Onishchenko UE (2013) Component composition of organic acids in leaves of Malva sylvestris. Chem Nat Compd 49:332–333. doi: 10.1007/s10600-013-0594-0 CrossRefGoogle Scholar
  33. Thornton CR, Slaughter DC, Davis RM (2010) Detection of the sour-rot pathogen Geotrichum candidum in tomato, fruit and juice by using a highly specific monoclonal antibody-based ELISA. Int J Food Microbiol 143(3):166–172. doi: 10.1016/j.ijfoodmicro.2010.08.012 CrossRefGoogle Scholar
  34. Van Dyk MS, Kock JLF, Botha A (1994) Hydroxy long-chain fatty acids in fungi. World J Microbiol Biotechnol 10(5):495–504. Accession Number: WOS:A1994PG36100004Google Scholar
  35. Weber RW, Kappe R, Paululat T, Mösker E, Anke H (2007) Anti-candida metabolites from endophytic fungi. Phytochemistry 68(6):886–892. doi: 10.1016/j.phytochem.2006.12.017 CrossRefGoogle Scholar
  36. Wołejko E, Matejczyk M (2011) Problem korozji biologicznej w budownictwie. Budownictwo i Inżynieria Środowiska 2:191–195Google Scholar
  37. Zhang K, Yu C, Yang S-T (2015) Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochem 50(2):173–179. doi: 10.1016/j.procbio.2014.12.015 CrossRefGoogle Scholar
  38. Żukiewicz-Sobczak W, Sobczak P, Imbor K, Krasowska E (2012) Zagrożenia grzybowe w budynkach i w mieszkaniach – wpływ na organizm człowieka. Medycyna Ogólna i Nauki o Zdrowiu 18(2):141–146Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Aleksandra Ostachowska
    • 1
  • Piotr Stepnowski
    • 2
  • Marek Gołębiowski
    • 1
    Email author
  1. 1.Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of ChemistryUniversity of GdańskGdańskPoland
  2. 2.Laboratory of Chemical Environmental Risks, Department of Environmental Analysis, Faculty of ChemistryUniversity of GdańskGdańskPoland

Personalised recommendations