Advertisement

Obesity Surgery

, Volume 30, Issue 2, pp 545–552 | Cite as

Lipoprotein(a) Change After Sleeve Gastrectomy Is Affected by the Presence of Metabolic Syndrome

  • Silvia ParedesEmail author
  • Marta Alves
  • Maria Lopes Pereira
  • Olinda Marques
  • Laura Ribeiro
Original Contributions
  • 46 Downloads

Abstract

Background

Patients with metabolic syndrome (MetS) are at high risk of developing cardiovascular disease (CVD) and lipoprotein(a) (Lp(a)) is an independent risk factor for CVD. This study aimed to determine the effect of vertical sleeve gastrectomy (VSG)–induced weight loss on Lp(a) levels in obese individuals.

Methods

Patients submitted to VSG from January 2011 to July 2015 were included. Anthropometric and metabolic parameters were recorded before and 12 months after surgery. Univariate analysis identified associations between Lp(a) and anthropometry and metabolic parameters, and the logistic regression predictors of Lp(a) decrease after VSG.

Results

MetS was present in 47% of the 330 patients involved. Patients with MetS had higher body mass index (BMI) and triglyceride levels and were more insulin-resistant. No differences were found between groups respecting Lp(a) levels prior to surgery (15.2 mg/dL vs. 15.0 mg/dL, p = 0.795). After surgery, patients without MetS had a decrease in Lp(a) levels (14.7 mg/dL vs. 12.3 mg/dL, p = 0.006), while MetS patients showed no differences (13.9 mg/dL vs. 14.6 mg/dL, p = 0.302). The regression model evidenced that older age and Δ HDL-c were predictors of Lp(a) decrease, whereas the greater the number of MetS components and lower estimated BF% loss, the lesser odds of decreasing Lp(a) after surgery.

Conclusions

Despite a global improvement of conventional CVD risk factors, only individuals without MetS showed a decrease of Lp(a) levels after VSG. Further studies should explore not only the pathophysiological mechanisms underlying the absence of decrease of Lp(a) levels in MetS patients, but also its impact on the metabolic beneficial changes usually observed after VSG.

Keywords

Metabolic syndrome Bariatric surgery Vertical sleeve gastrectomy Lipoprotein(a) Cardiovascular disease Dyslipidemia 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

References

  1. 1.
    Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32.CrossRefGoogle Scholar
  2. 2.
    Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45–62.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad Med J. 2005;81(956):358–66.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Batsis JA, Romero-Corral A, Collazo-Clavell ML, et al. Effect of bariatric surgery on the metabolic syndrome: a population-based, long-term controlled study. Mayo Clin Proc. 2008;83(8):897–907.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lee WJ, Huang MT, Wang W, et al. Effects of obesity surgery on the metabolic syndrome. Arch Surg. 2004;139(10):1088–92.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Van Osdol AD, Grover BT, Borgert AJ, et al. Impact of laparoscopic Roux-en-Y gastric bypass versus sleeve gastrectomy on postoperative lipid values. Surg Obes Relat Dis. 2017;13(3):399–403.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Benaiges D, Flores-Le-Roux JA, Pedro-Botet J, et al. Impact of restrictive (sleeve gastrectomy) vs hybrid bariatric surgery (Roux-en-Y gastric bypass) on lipid profile. Obes Surg. 2012;22(8):1268–75.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gomez-Martin JM, Balsa JA, Aracil E, et al. Beneficial changes on plasma apolipoproteins A and B, high density lipoproteins and oxidized low density lipoproteins in obese women after bariatric surgery: comparison between gastric bypass and sleeve gastrectomy. Lipids Health Dis. 2018;17(1):145.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Waldeyer C, Makarova N, Zeller T, et al. Lipoprotein(a) and the risk of cardiovascular disease in the European population: results from the BiomarCaRE consortium. Eur Heart J. 2017;38(32):2490–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bennet A, Di Angelantonio E, Erqou S, et al. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. Arch Intern Med. 2008;168(6):598–608.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rhee EJ, Cho JH, Lee DY, et al. Insulin resistance contributes more to the increased risk for diabetes development in subjects with low lipoprotein(a) level than insulin secretion. PLoS One. 2017;12(5):e0177500.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kelly E, Hemphill L. Lipoprotein(a): a lipoprotein whose time has come. Curr Treat Options Cardiovasc Med. 2017;19(7):48.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bermudez V, Rojas J, Salazar J, et al. Variations of lipoprotein(a) levels in the metabolic syndrome: a report from the Maracaibo City Metabolic Syndrome Prevalence Study. J Diabetes Res. 2013;2013:416451.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Vonbank A, Saely CH, Rein P, et al. Lipoprotein (a), the metabolic syndrome and vascular risk in angiographied coronary patients. J Clin Endocrinol Metab. 2016;101(8):3199–203.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sung KC, Wild SH, Byrne CD. Lipoprotein (a), metabolic syndrome and coronary calcium score in a large occupational cohort. Nutr Metab Cardiovasc Dis. 2013;23(12):1239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kotani K, Shimohiro H, Adachi S, et al. Relationship between lipoprotein(a), metabolic syndrome, and carotid atherosclerosis in older Japanese people. Gerontology. 2008;54(6):361–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kiortsis DN, Tzotzas T, Giral P, et al. Changes in lipoprotein(a) levels and hormonal correlations during a weight reduction program. Nutr Metab Cardiovasc Dis. 2001;11(3):153–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wood RJ, Volek JS, Davis SR, et al. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr Metab (Lond). 2006;3:19.CrossRefGoogle Scholar
  19. 19.
    Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Williams DB, Hagedorn JC, Lawson EH, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ram E, Vishne T, Magazanik A, et al. Changes in blood lipid levels following silastic ring vertical gastroplasty. Obes Surg. 2007;17(10):1292–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Facts. 2013;6(5):449–68.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yumuk V, Tsigos C, Fried M, et al. European guidelines for obesity management in adults. Obes Facts. 2015;8(6):402–24.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    American DA. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–27.CrossRefGoogle Scholar
  27. 27.
    Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Gomez-Ambrosi J, Silva C, Galofre JC, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2012;36(2):286–94.CrossRefGoogle Scholar
  29. 29.
    Flegal KM, Shepherd JA, Looker AC, et al. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr. 2009;89(2):500–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rivas-Crespo MF. Comment on Boyko and Jensen. Do we know what homeostatis model assessment measures? If not, does it matter? Diabetes Care. 2007;30:2725–8. Diabetes Care. 2015 Dec;38(12):e213CrossRefGoogle Scholar
  31. 31.
    Tremblay AJ, Morrissette H, Gagne JM, et al. Validation of the Friedewald formula for the determination of low-density lipoprotein cholesterol compared with beta-quantification in a large population. Clin Biochem. 2004;37(9):785–90.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Head GA. Cardiovascular and metabolic consequences of obesity. Front Physiol. 2015;6:32.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chang Y, Ryu S, Suh BS, et al. Impact of BMI on the incidence of metabolic abnormalities in metabolically healthy men. Int J Obes. 2012;36(9):1187–94.CrossRefGoogle Scholar
  34. 34.
    Davila-Batista V, Molina AJ, Vilorio-Marques L, et al. Net contribution and predictive ability of the CUN-BAE body fatness index in relation to cardiometabolic conditions. Eur J Nutr. 2019;58(5):1853–186.Google Scholar
  35. 35.
    Garciacaballero M, Reyes-Ortiz A, Garcia M, et al. Changes of body composition in patients with BMI 23-50 after tailored one anastomosis gastric bypass (BAGUA): influence of diabetes and metabolic syndrome. Obes Surg. 2014;24(12):2040–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Brochu M, Tchernof A, Turner AN, et al. Is there a threshold of visceral fat loss that improves the metabolic profile in obese postmenopausal women? Metabolism. 2003;52(5):599–604.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Vaverkova H, Karasek D, Halenka M, et al. Inverse association of lipoprotein (a) with markers of insulin resistance in dyslipidemic subjects. Physiol Res. 2017;66(Supplementum 1):S113–S20.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Chennamsetty I, Claudel T, Kostner KM, et al. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011;121(9):3724–34.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bozadjieva N, Heppner KM, Seeley RJ. Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. 2018;67(9):1720–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ethanic M, Stanimirov B, Pavlovic N, et al. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front Pharmacol. 2018;9:1382.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ma H, Patti ME. Bile acids, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2014;28(4):573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ghosh Laskar M, Eriksson M, Rudling M, et al. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J Intern Med. 2017;281(6):575–85.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Langhi C, Le May C, Kourimate S, et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett. 2008;582(6):949–55.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    O’Donoghue ML, Fazio S, Giugliano RP, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139(12):1483–92.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chennamsetty I, Claudel T, Kostner KM, et al. FGF19 signaling cascade suppresses APOA gene expression. Arterioscler Thromb Vasc Biol. 2012;32(5):1220–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39(1):121–9.CrossRefGoogle Scholar
  48. 48.
    Witztum JL, Ginsberg HN. Lipoprotein (a): coming of age at last. J Lipid Res. 2016;57(3):336–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Suzuki T, Aoyama J, Hashimoto M, et al. Correlation between postprandial bile acids and body fat mass in healthy normal-weight subjects. Clin Biochem. 2014;47(12):1128–31.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Endocrinology DepartmentHospital de BragaBragaPortugal
  2. 2.Department of Public Health and Forensic Sciences, and Medical Education, Medical Education UnitFaculty of Medicine of the University of PortoPortoPortugal
  3. 3.I3S-Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal

Personalised recommendations