Advertisement

Effect of Bariatric Surgery on Serum Inflammatory Factors of Obese Patients: a Systematic Review and Meta-Analysis

  • Moein Askarpour
  • Dana Khani
  • Ali Sheikhi
  • Ehsan Ghaedi
  • Shahab AlizadehEmail author
Review Article

Abstract

Obesity is one of the main causes of inflammation. Previous studies have reported inconclusive results regarding the effect of bariatric surgery on inflammatory markers. This systematic review and meta-analysis is aimed at describing the effect of bariatric surgery on C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α). PubMed/Medline and Scopus were systematically searched for all eligible studies from inception to June 2018. Results are expressed as weighted mean difference (MD) with 95% confidence intervals (CI) using a random effects model. Overall, 116 studies which evaluated serum CRP, IL-6, and TNF-α after bariatric surgery were included. Pooled effect size showed significant reduction in serum CRP (− 5.30 mg/l, 95% CI − 5.46, − 5.15, P < 0.001), IL-6 (− 0.58 pg/ml, 95% CI − 0.64, − 0.53, P < 0.001), and TNF-α (− 0.20 pg/ml, 95% CI − 0.39, − 0.02, P = 0.031) with significant heterogeneity across studies (> 95% for all factors). Bariatric surgery significantly lowered inflammatory factors; however, baseline BMI, follow-up duration and type of surgery could impact the extent of observed effects.

Keywords

Bariatric surgery C-reactive protein Interleukin 6 Tumor necrosis factor-α Meta-analysis 

Notes

Compliance with Ethical Standards

Ethical issues (including plagiarism, misconduct, data fabrication, falsification, double publication or submission, redundancy) have been completely observed by the authors.

Conflict of Interest

All authors declare that they have no conflict of interest.

Supplementary material

11695_2019_3926_MOESM1_ESM.pdf (15 kb)
Supplemental Fig. 1 (PDF 14 kb)
11695_2019_3926_MOESM2_ESM.pdf (9 kb)
Supplemental Fig. 2 (PDF 8 kb)
11695_2019_3926_Fig5_ESM.png (1.9 mb)
Supplemental Fig. 3

(PNG 1908 kb)

11695_2019_3926_MOESM3_ESM.tiff (153 kb)
High Resolution Image (TIFF 153 kb)
11695_2019_3926_MOESM4_ESM.docx (141 kb)
Supplemental Fig. 4 (DOCX 141 kb)
11695_2019_3926_MOESM5_ESM.docx (139 kb)
Supplemental Fig. 5 (DOCX 138 kb)
11695_2019_3926_MOESM6_ESM.docx (151 kb)
Supplemental Fig. 6 (DOCX 151 kb)

References

  1. 1.
    James, Philip T., Neville Rigby, Rachel Leach, and International Obesity Task Force. "The obesity epidemic, metabolic syndrome and future prevention strategies." Eur. J. Cardiovasc. Prev. Rehabil. 2004;11(1): 3–8.Google Scholar
  2. 2.
    Cai H, Shu XO, Gao YT, et al. A prospective study of dietary patterns and mortality in Chinese women. Epidemiology (Cambridge, Mass). 2007;18(3):393–401.  https://doi.org/10.1097/01.ede.0000259967.21114.45.CrossRefGoogle Scholar
  3. 3.
    Faith MS, Butryn M, Wadden TA, et al. Evidence for prospective associations among depression and obesity in population-based studies. Obes Rev. 2011;12(5):e438–53.  https://doi.org/10.1111/j.1467-789X.2010.00843.x.CrossRefPubMedGoogle Scholar
  4. 4.
    MacLean PS, Wing RR, Davidson T, et al. NIH working group report: innovative research to improve maintenance of weight loss. Obesity (Silver Spring, Md). 2015;23(1):7–15.  https://doi.org/10.1002/oby.20967.CrossRefGoogle Scholar
  5. 5.
    Madura 2nd JA, Dibaise JK. Quick fix or long-term cure? Pros and cons of bariatric surgery. F1000 Med Re. 2012;4:19.  https://doi.org/10.3410/m4-19.CrossRefGoogle Scholar
  6. 6.
    Tham JC, Howes N, le Roux CW. The role of bariatric surgery in the treatment of diabetes. Ther Adv Chronic Dis. 2014;5(3):149–57.  https://doi.org/10.1177/2040622313513313.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Courcoulas AP, Yanovski SZ, Bonds D, et al. Long-term outcomes of bariatric surgery: a National Institutes of Health symposium. JAMA Surg. 2014;149(12):1323–9.  https://doi.org/10.1001/jamasurg.2014.2440.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin N Am. 2009;56(5):1105–21.  https://doi.org/10.1016/j.pcl.2009.07.002.CrossRefGoogle Scholar
  9. 9.
    Tice JA, Karliner L, Walsh J, et al. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med. 2008;121(10):885–93.  https://doi.org/10.1016/j.amjmed.2008.05.036.CrossRefPubMedGoogle Scholar
  10. 10.
    Viégas M, Vasconcelos RS, Neves AP, et al. Bariatric surgery and bone metabolism: a systematic review. Arq Bras Endocrinol Metabol. 2010;54:158–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Whitson JM, Stackhouse GB, Stoller ML. Hyperoxaluria after modern bariatric surgery: case series and literature review. Int Urol Nephrol. 2010;42(2):369–74.  https://doi.org/10.1007/s11255-009-9602-5.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrero-Miliani L, Nielsen OH, Andersen PS, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol. 2007;147(2):227–35.  https://doi.org/10.1111/j.1365-2249.2006.03261.x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445–54.  https://doi.org/10.1038/nature07204.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jeong YJ, Oh HK, Park SH, et al. Association between inflammation and cancer stem cell phenotype in breast cancer. Oncol Lett. 2018;15(2):2380–6.  https://doi.org/10.3892/ol.2017.7607.CrossRefPubMedGoogle Scholar
  15. 15.
    Greenfield JR, Campbell LV. Relationship between inflammation, insulin resistance and type 2 diabetes: ‘cause or effect’? Curr Diabetes Rev. 2006;2(2):195–211.CrossRefPubMedGoogle Scholar
  16. 16.
    Libby P. History of discovery: inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(9):2045–51.  https://doi.org/10.1161/ATVBAHA.108.179705.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chimenti MS, Triggianese P, Conigliaro P, et al. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6(9):e1887.  https://doi.org/10.1038/cddis.2015.246.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bautista LE, Vera LM, Arenas IA, et al. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 2005;19(2):149–54.  https://doi.org/10.1038/sj.jhh.1001785.CrossRefPubMedGoogle Scholar
  19. 19.
    Ellulu MS, Patimah I, Khaza’ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–63.  https://doi.org/10.5114/aoms.2016.58928.CrossRefPubMedGoogle Scholar
  20. 20.
    Lafontan M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol. 2005;45:119–46.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095843.CrossRefPubMedGoogle Scholar
  21. 21.
    Ganter U, Arcone R, Toniatti C, et al. Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J. 1989;8(12):3773–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.  https://doi.org/10.1371/journal.pmed.1000097.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wells G, Shea B, O’connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Dept of Epidemiology and Community Medicine, University of Ottawa; 2011.Google Scholar
  24. 24.
    Wells GASB. The Newcastle Ottawa scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. 2011. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
  25. 25.
    Borenstein M, Hedges LV, Higgins JP, et al. Introduction to meta-analysis. Hoboken: Wiley; 2011.Google Scholar
  26. 26.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ: Br Med J. 2003;327(7414):557–60.CrossRefGoogle Scholar
  27. 27.
    Carroll JF, Franks SF, Smith AB, et al. Visceral adipose tissue loss and insulin resistance 6 months after laparoscopic gastric banding surgery: a preliminary study. Obes Surg. 2009;19(1):47–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Schmatz R, Bitencourt MR, Patias LD, et al. Evaluation of the biochemical, inflammatory and oxidative profile of obese patients given clinical treatment and bariatric surgery. Clin Chim Acta. 2017;465:72–9.  https://doi.org/10.1016/j.cca.2016.12.012.CrossRefPubMedGoogle Scholar
  29. 29.
    Nerla R, Tarzia P, Sestito A, et al. Effect of bariatric surgery on peripheral flow-mediated dilation and coronary microvascular function. Nutr Metab Cardiovasc Dis. 2012;22(8):626–34.  https://doi.org/10.1016/j.numecd.2010.10.004.CrossRefPubMedGoogle Scholar
  30. 30.
    Boulet LP, Turcotte H, Martin J, et al. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. Respir Med. 2012;106(5):651–60.  https://doi.org/10.1016/j.rmed.2011.12.012.CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng V, Kashyap SR, Schauer PR, et al. Restoration of glycemic control in patients with type 2 diabetes mellitus after bariatric surgery is associated with reduction in microparticles. Surg Obes Relat Dis. 2013;9(2):207–12.  https://doi.org/10.1016/j.soard.2011.09.026.CrossRefPubMedGoogle Scholar
  32. 32.
    Garrido-Sanchez L, Tome M, Santiago-Fernandez C, et al. Adipose tissue biomarkers involved in early resolution of type 2 diabetes after bariatric surgery. Surg Obes Relat Dis. 2017;13(1):70–7.  https://doi.org/10.1016/j.soard.2016.03.010.CrossRefPubMedGoogle Scholar
  33. 33.
    Lips MA, Pijl H, Van Klinken JB, et al. Roux-en-Y gastric bypass and calorie restriction induce comparable time-dependent effects on thyroid hormone function tests in obese female subjects. Eur J Endocrinol. 2013;169(3):339–47.  https://doi.org/10.1530/EJE-13-0339.CrossRefPubMedGoogle Scholar
  34. 34.
    Lips MA, van Klinken JB, Pijl H, et al. Weight loss induced by very low calorie diet is associated with a more beneficial systemic inflammatory profile than by Roux-en-Y gastric bypass. Metab Clin Exp. 2016;65(11):1614–20.  https://doi.org/10.1016/j.metabol.2016.07.013.CrossRefPubMedGoogle Scholar
  35. 35.
    Shih KC, Janckila AJ, Lee WJ, et al. Effects of bariatric weight loss surgery on glucose metabolism, inflammatory cytokines, and serum tartrate-resistant acid phosphatase 5a in obese Chinese adults. Clin Chim Acta. 2016;453:197–202.  https://doi.org/10.1016/j.cca.2015.11.004.CrossRefPubMedGoogle Scholar
  36. 36.
    Jimenez A, Perea V, Corcelles R, et al. Metabolic effects of bariatric surgery in insulin-sensitive morbidly obese subjects. Obes Surg. 2013;23(4):494–500.  https://doi.org/10.1007/s11695-012-0817-7.CrossRefPubMedGoogle Scholar
  37. 37.
    van Huisstede A, Rudolphus A, Cabezas MC, Biter LU, van de Geijn G-J, Taube C, et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax. 2015;70(7):659-67.Google Scholar
  38. 38.
    Komorowski J, Jankiewicz-Wika J, Kolomecki K, et al. Systemic blood osteopontin, endostatin, and E-selectin concentrations after vertical banding surgery in severely obese adults. Cytokine. 2011;55(1):56–61.  https://doi.org/10.1016/j.cyto.2011.03.020.CrossRefPubMedGoogle Scholar
  39. 39.
    Lima MM, Pareja JC, Alegre SM, et al. Acute effect of roux-en-y gastric bypass on whole-body insulin sensitivity: a study with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(8):3871–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Lin L-Y, Lee W-J, Shen H-N, et al. Nitric oxide production is paradoxically decreased after weight reduction surgery in morbid obesity patients. Atherosclerosis. 2007;190(2):436–42.CrossRefPubMedGoogle Scholar
  41. 41.
    Magro DO, Cazzo E, Kotze PG, et al. Glucose metabolism parameters and post-prandial GLP-1 and GLP-2 release largely vary in several distinct situations: a controlled comparison among individuals with Crohn’s disease and individuals with obesity before and after bariatric surgery. Obes Surg. 2018;28(2):378–88.CrossRefPubMedGoogle Scholar
  42. 42.
    Tussing-Humphreys LM, Nemeth E, Fantuzzi G, et al. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity. 2010;18(10):2010–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Tussing-Humphreys L, Pini M, Ponemone V, et al. Suppressed cytokine production in whole blood cultures may be related to iron status and hepcidin and is partially corrected following weight reduction in morbidly obese pre-menopausal women. Cytokine. 2011;53(2):201–6.  https://doi.org/10.1016/j.cyto.2010.11.008.CrossRefPubMedGoogle Scholar
  44. 44.
    Sdralis E, Argentou M, Mead N, et al. A prospective randomized study comparing patients with morbid obesity submitted to sleeve gastrectomy with or without omentectomy. Obes Surg. 2013;23(7):965–71.  https://doi.org/10.1007/s11695-013-0925-z.CrossRefPubMedGoogle Scholar
  45. 45.
    Swarbrick M, Stanhope K, Austrheim-Smith I, et al. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008;51(10):1901–11.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lin E, Phillips LS, Ziegler TR, et al. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007;56(3):735–42.CrossRefPubMedGoogle Scholar
  47. 47.
    Chacon M, Miranda M, Jensen C, et al. Human serum levels of fetal antigen 1 (FA1/Dlk1) increase with obesity, are negatively associated with insulin sensitivity and modulate inflammation in vitro. Int J Obes. 2008;32(7):1122–9.CrossRefGoogle Scholar
  48. 48.
    Broch M, Gómez JM, Auguet MT, et al. Association of retinol-binding protein-4 (RBP4) with lipid parameters in obese women. Obes Surg. 2010;20(9):1258–64.CrossRefPubMedGoogle Scholar
  49. 49.
    Botella-Carretero JI, Álvarez-Blasco F, Martinez-García MÁ, et al. The decrease in serum IL-18 levels after bariatric surgery in morbidly obese women is a time-dependent event. Obes Surg. 2007;17(9):1199–208.CrossRefPubMedGoogle Scholar
  50. 50.
    Simón I, Escoté X, Vilarrasa N, et al. Adipocyte fatty acid-binding protein as a determinant of insulin sensitivity in morbid-obese women. Obesity. 2009;17(6):1124–8.PubMedGoogle Scholar
  51. 51.
    Auguet T, Terra X, Hernandez M, et al. Clinical and adipocytokine changes after bariatric surgery in morbidly obese women. Obesity (Silver Spring). 2014;22(1):188–94.  https://doi.org/10.1002/oby.20470.CrossRefGoogle Scholar
  52. 52.
    Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.  https://doi.org/10.1007/s11695-012-0643-y.CrossRefPubMedGoogle Scholar
  53. 53.
    Cintra W, Modolin M, Faintuch J, et al. C-reactive protein decrease after postbariatric abdominoplasty. Inflammation. 2012;35(1):316–20.  https://doi.org/10.1007/s10753-011-9321-9.CrossRefPubMedGoogle Scholar
  54. 54.
    Alili R, Nivet-Antoine V, Saldmann A, et al. Human catalase gene promoter haplotype and cardiometabolic improvement after bariatric surgery. Gene. 2018;656:17–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Capuron L, Poitou C, Machaux-Tholliez D, et al. Relationship between adiposity, emotional status and eating behaviour in obese women: role of inflammation. Psychol Med. 2011;41(7):1517–28.CrossRefPubMedGoogle Scholar
  56. 56.
    Kopp H-P, Krzyzanowska K, Schernthaner G-H, et al. Relationship of androgens to insulin resistance and chronic inflammation in morbidly obese premenopausal women: studies before and after vertical banded gastroplasty. Obes Surg. 2006;16(9):1214–20.CrossRefPubMedGoogle Scholar
  57. 57.
    Schaller G, Aso Y, Schernthaner G-H, et al. Increase of osteopontin plasma concentrations after bariatric surgery independent from inflammation and insulin resistance. Obes Surg. 2009;19(3):351–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Manco M, Fernandez-Real JM, Equitani F, et al. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women. J Clin Endocrinol Metab. 2006;92(2):483–90.CrossRefPubMedGoogle Scholar
  59. 59.
    Cugno M, Castelli R, Mari D, et al. Inflammatory and prothrombotic parameters in normotensive non-diabetic obese women: effect of weight loss obtained by gastric banding. Intern Emerg Med. 2012;7(3):237–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Silva-Nunes J, Oliveira A, Duarte L, et al. Factors related with adiponectinemia in obese and normal-weight women and with its variation in weight loss programs. Obes Facts. 2013;6(2):124–33.  https://doi.org/10.1159/000350664.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Blum A, Tamir S, Hazzan D, et al. Gender effect on vascular inflammation following bariatric surgery. Eur Cytokine Netw. 2012;23(4):154–7.PubMedGoogle Scholar
  62. 62.
    Marantos G, Daskalakis M, Karkavitsas N, et al. Changes in metabolic profile and adipoinsular axis in morbidly obese premenopausal females treated with restrictive bariatric surgery. World J Surg. 2011;35(9):2022–3.  https://doi.org/10.1007/s00268-011-1165-9.CrossRefPubMedGoogle Scholar
  63. 63.
    Dillard TH, Purnell JQ, Smith MD, et al. Omentectomy added to Roux-en-Y gastric bypass surgery: a randomized, controlled trial. Surg Obes Relat Dis. 2013;9(2):269–75.  https://doi.org/10.1016/j.soard.2011.09.027.CrossRefPubMedGoogle Scholar
  64. 64.
    Sams VG, Blackledge C, Wijayatunga N, et al. Effect of bariatric surgery on systemic and adipose tissue inflammation. Surg Endosc. 2016;30(8):3499–504.  https://doi.org/10.1007/s00464-015-4638-3.CrossRefPubMedGoogle Scholar
  65. 65.
    Belligoli A, Sanna M, Serra R, et al. Incidence and predictors of hypoglycemia 1 year after laparoscopic sleeve gastrectomy. Obes Surg. 2017;27(12):3179–86.  https://doi.org/10.1007/s11695-017-2742-2.CrossRefPubMedGoogle Scholar
  66. 66.
    Appachi S, Kelly KR, Schauer PR, et al. Reduced cardiovascular risk following bariatric surgeries is related to a partial recovery from “adiposopathy”. Obes Surg. 2011;21(12):1928–36.  https://doi.org/10.1007/s11695-011-0447-5.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2011;7(5):618–24.  https://doi.org/10.1016/j.soard.2011.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hawkins MA, Alosco ML, Spitznagel MB, et al. The association between reduced inflammation and cognitive gains after bariatric surgery. Psychosom Med. 2015;77(6):688–96.  https://doi.org/10.1097/psy.0000000000000125.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Netto BD, Bettini SC, Clemente AP, et al. Roux-en-Y gastric bypass decreases pro-inflammatory and thrombotic biomarkers in individuals with extreme obesity. Obes Surg. 2015;25(6):1010–8.  https://doi.org/10.1007/s11695-014-1484-7.CrossRefPubMedGoogle Scholar
  70. 70.
    Chalut-Carpentier A, Pataky Z, Golay A, et al. Involvement of dietary fatty acids in multiple biological and psychological functions, in morbidly obese subjects. Obes Surg. 2015;25(6):1031–8.  https://doi.org/10.1007/s11695-014-1471-z.CrossRefPubMedGoogle Scholar
  71. 71.
    Flores L, Nunez I, Vidal J, et al. Endothelial function in hypertensive obese patients: 1 year after surgically induced weight loss. Obes Surg. 2014;24(9):1581–4.  https://doi.org/10.1007/s11695-014-1328-5.CrossRefPubMedGoogle Scholar
  72. 72.
    Pallayova M, Steele KE, Magnuson TH, et al. Sleep apnea determines soluble TNF-α receptor 2 response to massive weight loss. Obes Surg. 2011;21(9):1413–23.  https://doi.org/10.1007/s11695-011-0359-4.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Agrawal V, Krause KR, Chengelis DL, et al. Relation between degree of weight loss after bariatric surgery and reduction in albuminuria and C-reactive protein. Surg Obes Relat Dis. 2009;5(1):20–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Torriani M, Oliveira AL, Azevedo DC, et al. Effects of Roux-en-Y gastric bypass surgery on visceral and subcutaneous fat density by computed tomography. Obes Surg. 2014;25(2):381–5.  https://doi.org/10.1007/s11695-014-1485-6.CrossRefGoogle Scholar
  75. 75.
    Sparks JA, Halperin F, Karlson JC, et al. Impact of bariatric surgery on patients with rheumatoid arthritis. Arthritis Care Res. 2015;67(12):1619–26.  https://doi.org/10.1002/acr.22629.CrossRefGoogle Scholar
  76. 76.
    Nijhawan S, Richards W, O'Hea MF, et al. Bariatric surgery rapidly improves mitochondrial respiration in morbidly obese patients. Surg Endosc. 2013;27(12):4569–73.  https://doi.org/10.1007/s00464-013-3125-y.CrossRefPubMedGoogle Scholar
  77. 77.
    Ruiz-Tovar J, Oller I, Galindo I, et al. Change in levels of C-reactive protein (CRP) and serum cortisol in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. 2013;23(6):764–9.  https://doi.org/10.1007/s11695-013-0865-7.CrossRefPubMedGoogle Scholar
  78. 78.
    Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.CrossRefPubMedGoogle Scholar
  79. 79.
    Kelly AS, Ryder JR, Marlatt KL, et al. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity. Int J Obes (2005). 2016;40(2):275–80.  https://doi.org/10.1038/ijo.2015.174.CrossRefGoogle Scholar
  80. 80.
    Brethauer SA, Heneghan HM, Eldar S, et al. Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg Endosc. 2011;25(8):2650–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Tamboli RA, Hajri T, Jiang A, et al. Reduction in inflammatory gene expression in skeletal muscle from Roux-en-Y gastric bypass patients randomized to omentectomy. PLoS One. 2011;6(12):e28577.  https://doi.org/10.1371/journal.pone.0028577.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ueda Y, Hajri T, Peng D, et al. Reduction of 8-iso-prostaglandin F2α in the first week after Roux-en-Y gastric bypass surgery. Obesity. 2011;19(8):1663–8.  https://doi.org/10.1038/oby.2011.58.CrossRefPubMedGoogle Scholar
  83. 83.
    Zagorski SM, Papa NN, Chung MH. The effect of weight loss after gastric bypass on C-reactive protein levels. Surg Obes Relat Dis. 2005;1(2):81–5.CrossRefPubMedGoogle Scholar
  84. 84.
    Huang H, Kasumov T, Gatmaitan P, et al. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity. 2011;19(11):2235–40.CrossRefPubMedGoogle Scholar
  85. 85.
    Ramsay MAE. The chronic inflammation of obesity and its effects on surgery and anesthesia. Int Anesthesiol Clin. 2013;51(3):1–12.  https://doi.org/10.1097/AIA.0b013e3182981219.CrossRefPubMedGoogle Scholar
  86. 86.
    Shimizu H, Hatao F, Imamura K, et al. Early effects of sleeve gastrectomy on obesity-related cytokines and bile acid metabolism in morbidly obese Japanese patients. Obes Surg. 2017;27(12):3223–9.PubMedGoogle Scholar
  87. 87.
    Pardina E, Ferrer R, Baena-Fustegueras JA, et al. Only C-reactive protein, but not TNF-alpha or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg. 2012;22(1):131–9.  https://doi.org/10.1007/s11695-011-0546-3.CrossRefPubMedGoogle Scholar
  88. 88.
    Vázquez LA, Pazos F, Berrazueta JR, et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab. 2005;90(1):316–22.CrossRefPubMedGoogle Scholar
  89. 89.
    Pérez-Romero N, Serra A, Granada ML, et al. Effects of two variants of Roux-en-Y gastric bypass on metabolism behaviour: focus on plasma ghrelin concentrations over a 2-year follow-up. Obes Surg. 2010;20(5):600–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Garrido-Sanchez L, Murri M, Rivas-Becerra J, et al. Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy. Surg Obes Relat Dis. 2012;8(2):145–50.  https://doi.org/10.1016/j.soard.2011.03.010.CrossRefPubMedGoogle Scholar
  91. 91.
    Arismendi E, Rivas E, Agusti A, et al. The systemic inflammome of severe obesity before and after bariatric surgery. PLoS One. 2014;9(9):e107859.  https://doi.org/10.1371/journal.pone.0107859.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    De Luis D, Pacheco D, Aller R, et al. Influence of G308A polymorphism of tumor necrosis factor alpha gene on surgical results of biliopancreatic diversion. Obes Surg. 2010;20(2):221–5.CrossRefPubMedGoogle Scholar
  93. 93.
    Maymó-Masip E, Fernández-Veledo S, España AG, et al. The rise of soluble TWEAK levels in severely obese subjects after bariatric surgery may affect adipocyte-cytokine production induced by TNFα. J Clin Endocrinol Metab. 2013;98(8):E1323–E33.  https://doi.org/10.1210/jc.2012-4177.CrossRefPubMedGoogle Scholar
  94. 94.
    Parreno Caparros E, Illan Gomez F, Gonzalvez Ortega M, et al. Resistin in morbidly obese patients before and after gastric bypass surgery. Nutr Hosp. 2017;34(5):1333–7.  https://doi.org/10.20960/nh.1028.CrossRefPubMedGoogle Scholar
  95. 95.
    Gómez FI, Ortega MG, Alonso AA, et al. Obesity, endothelial function and inflammation: the effects of weight loss after bariatric surgery. Nutr Hosp. 2016;33(6)Google Scholar
  96. 96.
    Chen S-B, Lee Y-C, Ser K-H, et al. Serum C-reactive protein and white blood cell count in morbidly obese surgical patients. Obes Surg. 2009;19(4):461–6.CrossRefPubMedGoogle Scholar
  97. 97.
    Knøsgaard L, Thomsen SB, Støckel M, et al. Circulating sCD36 is associated with unhealthy fat distribution and elevated circulating triglycerides in morbidly obese individuals. Nutr Diabetes. 2014;4:e114.  https://doi.org/10.1038/nutd.2014.11.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bueter M, Dubb S, Gill A, et al. Renal cytokines improve early after bariatric surgery. Br J Surg. 2010;97(12):1838–44.CrossRefPubMedGoogle Scholar
  99. 99.
    Lammert A, Hasenberg T, Kraupner C, et al. Improved arteriole-to-venule ratio of retinal vessels resulting from bariatric surgery. Obesity (Silver Spring). 2012;20(11):2262–7.  https://doi.org/10.1038/oby.2012.122.CrossRefGoogle Scholar
  100. 100.
    Mallipedhi A, Prior SL, Barry JD, et al. Changes in inflammatory markers after sleeve gastrectomy in patients with impaired glucose homeostasis and type 2 diabetes. Surg Obes Relat Dis. 2014;10(6):1123–8.  https://doi.org/10.1016/j.soard.2014.04.019.CrossRefPubMedGoogle Scholar
  101. 101.
    van de Sande-Lee S, Pereira FR, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 20111;60(6):1699–704.Google Scholar
  102. 102.
    Geloneze S, Geloneze B, Morari J, et al. PGC1α gene Gly482Ser polymorphism predicts improved metabolic, inflammatory and vascular outcomes following bariatric surgery. Int J Obes. 2012;36(3):363–8.CrossRefGoogle Scholar
  103. 103.
    Boesing F, Moreira EAM, Wilhelm-Filho D, et al. Roux-en-Y bypass gastroplasty: markers of oxidative stress 6 months after surgery. Obes Surg. 2010;20(9):1236–44.CrossRefPubMedGoogle Scholar
  104. 104.
    Lambert G, de Oliveira Lima MM, Felici A, et al. Early regression of carotid intima-media thickness after bariatric surgery and its relation to serum leptin reduction. Obes Surg. 2018;28(1):226–33.CrossRefPubMedGoogle Scholar
  105. 105.
    Saleh MH, Bertolami MC, Assef JE, et al. Improvement of atherosclerotic markers in non-diabetic patients after bariatric surgery. Obes Surg. 2012;22(11):1701–7.  https://doi.org/10.1007/s11695-012-0706-0.CrossRefPubMedGoogle Scholar
  106. 106.
    de Moura-Grec PG, Yamashita JM, Marsicano JA, et al. Impact of bariatric surgery on oral health conditions: 6-months cohort study. Int Dent J. 2014;64(3):144–9.  https://doi.org/10.1111/idj.12090.CrossRefPubMedGoogle Scholar
  107. 107.
    Sales-Peres SH, de Moura-Grec PG, Yamashita JM, et al. Periodontal status and pathogenic bacteria after gastric bypass: a cohort study. J Clin Periodontol. 2015;42(6):530–6.  https://doi.org/10.1111/jcpe.12410.CrossRefPubMedGoogle Scholar
  108. 108.
    Oliveira CS, Beserra BTS, Cunha RSG, et al. Impact of Roux-en-Y gastric bypass on lipid and inflammatory profiles. Rev Col Bras Cir. 2015;42(5):305–10.  https://doi.org/10.1590/0100-69912015005007.CrossRefGoogle Scholar
  109. 109.
    Iannelli A, Anty R, Schneck AS, et al. Inflammation, insulin resistance, lipid disturbances, anthropometrics, and metabolic syndrome in morbidly obese patients: a case control study comparing laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Surgery. 2011;149(3):364–70.CrossRefPubMedGoogle Scholar
  110. 110.
    Iannelli A, Anty R, Schneck AS, et al. Evolution of low-grade systemic inflammation, insulin resistance, anthropometrics, resting energy expenditure and metabolic syndrome after bariatric surgery: a comparative study between gastric bypass and sleeve gastrectomy. J Visc Surg. 2013;150(4):269–75.  https://doi.org/10.1016/j.jviscsurg.2013.08.005.CrossRefPubMedGoogle Scholar
  111. 111.
    Richette P, Poitou C, Garnero P, et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139–44.  https://doi.org/10.1136/ard.2010.134015.CrossRefPubMedGoogle Scholar
  112. 112.
    Richette P, Poitou C, Manivet P, et al. Weight loss, xanthine oxidase, and serum urate levels: a prospective longitudinal study of obese patients. Arthritis Care Res (Hoboken). 2016;68(7):1036–42.  https://doi.org/10.1002/acr.22798.CrossRefGoogle Scholar
  113. 113.
    Favre G, Anty R, Canivet C, et al. Determinants associated with the correction of glomerular hyper-filtration one year after bariatric surgery. Surg Obes Relat Dis. 2017;13(10):1760–6.  https://doi.org/10.1016/j.soard.2017.07.018.CrossRefPubMedGoogle Scholar
  114. 114.
    Sans A, Bailly L, Anty R, et al. Baseline anthropometric and metabolic parameters correlate with weight loss in women 1-year after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2017;27(11):2940–9.  https://doi.org/10.1007/s11695-017-2720-8.CrossRefPubMedGoogle Scholar
  115. 115.
    Tschoner A, Sturm W, Ress C, et al. Effect of weight loss on serum pigment epithelium-derived factor levels. Eur J Clin Investig. 2011;41(9):937–42.CrossRefGoogle Scholar
  116. 116.
    Ress C, Tschoner A, Engl J, et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Investig. 2010;40(3):277–80.CrossRefGoogle Scholar
  117. 117.
    Wong AT, Chan DC, Armstrong J, et al. Effect of laparoscopic sleeve gastrectomy on elevated C-reactive protein and atherogenic dyslipidemia in morbidly obese patients. Clin Biochem. 2011;44(4):342–4.CrossRefPubMedGoogle Scholar
  118. 118.
    Moschen AR, Molnar C, Enrich B, et al. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol Med. 2011;17(7–8):840–5.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Thöni V, Pfister A, Melmer A, et al. Dynamics of bile acid profiles, GLP-1, and FGF19 after laparoscopic gastric banding. J Clin Endocrinol Metab. 2017;102(8):2974–84.CrossRefPubMedGoogle Scholar
  120. 120.
    Jürets A, Itariu BK, Keindl M, et al. Upregulated TNF expression 1 year after bariatric surgery reflects a cachexia-like state in subcutaneous adipose tissue. Obes Surg. 2017;27(6):1514–23.  https://doi.org/10.1007/s11695-016-2477-5.CrossRefPubMedGoogle Scholar
  121. 121.
    Iaffaldano L, Nardelli C, Pilone V, et al. Laparoscopic adjustable gastric banding reduces subcutaneous adipose tissue and blood inflammation in nondiabetic morbidly obese individuals. Obes Surg. 2014;24(12):2161–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Campello E, Zabeo E, Radu CM, et al. Dynamics of circulating microparticles in obesity after weight loss. Intern Emerg Med. 2016;11(5):695–702.  https://doi.org/10.1007/s11739-016-1397-7.CrossRefPubMedGoogle Scholar
  123. 123.
    Santilli F, Guagnano MT, Innocenti P, et al. Pentraxin 3 and platelet activation in obese patients after gastric banding. Circ J. 2016;80(2):502–11.  https://doi.org/10.1253/circj.CJ-15-0721.CrossRefPubMedGoogle Scholar
  124. 124.
    Di Renzo L, Carbonelli M, Bianchi A, et al. Body composition changes after laparoscopic adjustable gastric banding: what is the role of− 174G> C interleukin-6 promoter gene polymorphism in the therapeutic strategy? Int J Obes. 2012;36(3):369–78.CrossRefGoogle Scholar
  125. 125.
    Sainsbury A, Goodlad RA, Perry SL, et al. Increased colorectal epithelial cell proliferation and crypt fission associated with obesity and roux-en-Y gastric bypass. Cancer Epidemiol Prev Biomark. 2008;17(6):1401–10.CrossRefGoogle Scholar
  126. 126.
    Farey JE, Fisher OM, Levert-Mignon AJ, et al. Decreased levels of circulating cancer-associated protein biomarkers following bariatric surgery. Obes Surg. 2017;27(3):578–85.  https://doi.org/10.1007/s11695-016-2321-y.CrossRefPubMedGoogle Scholar
  127. 127.
    Gannagé-Yared M-H, Yaghi C, Habre B, et al. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol. 2008;158(3):353–9.CrossRefPubMedGoogle Scholar
  128. 128.
    Maruna P, Gürlich R, Fried M, et al. Leptin as an acute phase reactant after non-adjustable laparoscopic gastric banding. Obes Surg. 2001;11(5):609–14.CrossRefPubMedGoogle Scholar
  129. 129.
    Gjessing HR, Nielsen HJ, Mellgren G, et al. Energy intake, nutritional status and weight reduction in patients one year after laparoscopic sleeve gastrectomy. SpringerPlus. 2013;2:352.  https://doi.org/10.1186/2193-1801-2-352.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Nestvold TK, Nielsen EW, Ludviksen JK, et al. Lifestyle changes followed by bariatric surgery lower inflammatory markers and the cardiovascular risk factors C3 and C4. Metab Syndr Relat Disord. 2015;13(1):29–35.  https://doi.org/10.1089/met.2014.0099.CrossRefPubMedGoogle Scholar
  131. 131.
    Santos J, Salgado P, Santos C, et al. Effect of bariatric surgery on weight loss, inflammation, iron metabolism, and lipid profile. Scand J Surg. 2014;103(1):21–5.  https://doi.org/10.1177/1457496913490467.CrossRefPubMedGoogle Scholar
  132. 132.
    Yang P-J, Lee W-J, Tseng P-H, et al. Bariatric surgery decreased the serum level of an endotoxin-associated marker: lipopolysaccharide-binding protein. Surg Obes Relat Dis. 2014;10(6):1182–7.CrossRefPubMedGoogle Scholar
  133. 133.
    Hakeam HA, O’Regan PJ, Salem AM, et al. Impact of laparoscopic sleeve gastrectomy on iron indices: 1 year follow-up. Obes Surg. 2009;19(11):1491–6.CrossRefPubMedGoogle Scholar
  134. 134.
    Hakeam HA, O’Regan PJ, Salem AM, et al. Inhibition of C-reactive protein in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. 2009;19(4):456–60.CrossRefPubMedGoogle Scholar
  135. 135.
    Randell EW, Twells LK, Gregory DM, et al. Pre-operative and post-operative changes in CRP and other biomarkers sensitive to inflammatory status in patients with severe obesity undergoing laparoscopic sleeve gastrectomy. Clin Biochem. 2018;52:13–9.CrossRefPubMedGoogle Scholar
  136. 136.
    Chung MY, Hong SJ, Lee JY. The influence of obesity on postoperative inflammatory cytokine levels. J Int Med Res. 2011;39(6):2370–8.  https://doi.org/10.1177/147323001103900637.CrossRefPubMedGoogle Scholar
  137. 137.
    Park S, Kim YJ, C-y C, et al. Bariatric surgery can reduce albuminuria in patients with severe obesity and normal kidney function by reducing systemic inflammation. Obes Surg. 2018;28(3):831–7.CrossRefPubMedGoogle Scholar
  138. 138.
    Gesquiere I, Foulon V, Augustijns P, et al. Micronutrient intake, from diet and supplements, and association with status markers in pre- and post-RYGB patients. Clin Nutr (Edinburgh, Scotland). 2017;36(4):1175–81.  https://doi.org/10.1016/j.clnu.2016.08.009.CrossRefGoogle Scholar
  139. 139.
    Werling M, Vincent RP, Cross GF, et al. Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery. Scand J Gastroenterol. 2013;48(11):1257–64.  https://doi.org/10.3109/00365521.2013.833647.CrossRefPubMedGoogle Scholar
  140. 140.
    Johansson HE, Wahlen A, Aldenback E, et al. Platelet counts and liver enzymes after gastric bypass surgery. Obes Surg. 2017;28:1526–31.  https://doi.org/10.1007/s11695-017-3035-5.CrossRefPubMedCentralGoogle Scholar
  141. 141.
    Montecucco F, Lenglet S, Quercioli A, et al. Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammation via N-oleoylethanolamide (OEA)-mediated pathways. Thromb Haemost. 2015;113(4):838–50.  https://doi.org/10.1160/th14-06-0506.CrossRefPubMedGoogle Scholar
  142. 142.
    Galanakis CG, Daskalakis M, Manios A, et al. Computed tomography-based assessment of abdominal adiposity changes and their impact on metabolic alterations following bariatric surgery. World J Surg. 2015;39(2):417–23.  https://doi.org/10.1007/s00268-014-2826-2.CrossRefPubMedGoogle Scholar
  143. 143.
    Rao SR. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res. 2012;61(8):789–807.CrossRefPubMedGoogle Scholar
  144. 144.
    Heilbronn L, Noakes M, Clifton P. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vasc Biol. 2001;21(6):968–70.CrossRefPubMedGoogle Scholar
  145. 145.
    Bastard J-P, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000;85(9):3338–42.PubMedGoogle Scholar
  146. 146.
    Bueno NB, de Melo ISV, de Oliveira SL, et al. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(7):1178–87.CrossRefPubMedGoogle Scholar
  147. 147.
    Gill JM, Malkova D. Physical activity, fitness and cardiovascular disease risk in adults: interactions with insulin resistance and obesity. Clin Sci. 2006;110(4):409–25.CrossRefPubMedGoogle Scholar
  148. 148.
    Jung DY, Ko HJ, Lichtman EI, et al. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice. Am J Physiol Endocrinol Metab. 2013;304(9):E964–E76.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Cancello R, Clement K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG Int J Obstet Gynaecol. 2006;113(10):1141–7.CrossRefGoogle Scholar
  150. 150.
    Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19(22):6074–83.Google Scholar
  151. 151.
    Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biomed Sci Med Sci. 2014;69(Suppl_1):S4–9.CrossRefGoogle Scholar
  152. 152.
    Rosenblat JD, Cha DS, Mansur RB, et al. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;53:23–34.CrossRefGoogle Scholar
  153. 153.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.CrossRefGoogle Scholar
  154. 154.
    Amor S, Puentes F, Baker D, et al. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–69.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.CrossRefPubMedGoogle Scholar
  156. 156.
    Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173(10):1114–21.CrossRefPubMedGoogle Scholar
  157. 157.
    Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15(2):152–8.PubMedGoogle Scholar
  158. 158.
    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Moein Askarpour
    • 1
  • Dana Khani
    • 2
  • Ali Sheikhi
    • 1
  • Ehsan Ghaedi
    • 1
    • 3
  • Shahab Alizadeh
    • 4
    Email author
  1. 1.Department of Community Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
  2. 2.Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food SciencesIsfahan University of Medical SciencesIsfahanIran
  3. 3.Students’ Scientific Research Center (SSRC)Tehran University of Medical Sciences (TUMS)TehranIran
  4. 4.Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran

Personalised recommendations