Effects of Biliopancreatic Diversion on Bone Turnover Markers and Association with Hormonal Factors in Patients with Severe Obesity

  • Anne-Frédérique Turcotte
  • Thomas Grenier-Larouche
  • Roth-Visal Ung
  • David Simonyan
  • Anne-Marie Carreau
  • André C. Carpentier
  • Fabrice Mac-Way
  • Laetitia Michou
  • André Tchernof
  • Laurent Biertho
  • Stefane Lebel
  • Simon Marceau
  • Claudia GagnonEmail author
Original Contributions



This study evaluated early and medium-term changes in bone turnover markers, and their associations with weight loss, total bone mineral density (BMD), and hormonal changes after biliopancreatic diversion (BPD).


Ancillary study from a one-year prospective cohort of 16 individuals assessed before, 3 days, 3 and 12 months after BPD. Bone turnover markers (C-terminal telopeptide (CTX), intact osteocalcin (OC), sclerostin, and osteoprotegerin (OPG)) and several hormones were measured at each visit. Total BMD by DXA was assessed at baseline, 3 and 12 months after BPD. Three participants were lost to follow-up.


CTX increased significantly at 3 days (+ 66%), 3 months (+ 219%), and 12 months (+ 295%). OC decreased at 3 days (− 19%) then increased at 3 months (+ 69%) and 12 months (+ 164%). Change in sclerostin was only significant between 3 days and 3 months (+ 13%), while change in OPG was significant between baseline and 3 days (+ 48%) and baseline and 12 months (+ 45%). CTX increase correlated negatively with weight loss at 3 (r = − 0.63, p = 0.009) and 12 months (r = − 0.58, p = 0.039), and total BMD decrease (r = − 0.67, p = 0.033) at 12 months. Change in insulin and adiponectin correlated with changes in bone turnover markers independently of weight loss.


BPD causes an earlier and greater increase in bone resorption over bone formation markers and a decrease in total BMD. Sclerostin did not increase as expected following extensive weight loss. Changes in insulin and adiponectin seem to play a role in the activation of bone remodeling after BPD.


Biochemical markers of bone turnover Bariatric surgery Biliopancreatic diversion Bone mineral density Hormones 


Funding Information

The Canadian Institutes of Health Research (MOP 97947), Diabetes Canada and CHU de Québec Foundation provided funding for this research.

Compliance with Ethical Standards

Conflict of Interest

AMC is the recipient of Fonds de recherche du Québec-Santé (FRQ-S) and Diabetes Canada scholarships. ACC is the recipient of the GSK Chair in Diabetes of Université de Sherbrooke. LM reports non-financial support from Roche Diagnostics Canada, personal fees from Amgen, personal fees from Eli Lilly, personal fees from Abbvie, personal fees from Bristol-Myers Squibb, personal fees from Novartis, outside the submitted work. AT and LB receive funding from Johnson Johnson Medical Companies and Medtronic for research studies on bariatric surgery. CG is a clinical research scholar of the FRQ-S and the recipient of a Diabetes Canada New Investigator Award. She received research funding from Technologies Khlôros, and speaker honoraria from Amgen, Eli Lilly, and Janssen. All other authors report no conflicts of interest.


  1. 1.
    Ozsoy Z, Demir E. Which bariatric procedure is the most popular in the world? A bibliometric comparison. Obes Surg. 2018.Google Scholar
  2. 2.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.CrossRefGoogle Scholar
  3. 3.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.CrossRefGoogle Scholar
  4. 4.
    Claudia G, Schafer AL. Bone health after bariatric surgery. JBMR Plus. 2018;2(3):121–33.CrossRefGoogle Scholar
  5. 5.
    Lu CW, Chang YK, Chang HH, et al. Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine (Baltimore). 2015;94(48):e2087.CrossRefGoogle Scholar
  6. 6.
    Yu EW, Bouxsein ML, Putman MS, et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2015;100(4):1452–9.CrossRefGoogle Scholar
  7. 7.
    Rousseau C, Jean S, Gamache P, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. 2016;354:i3794.CrossRefGoogle Scholar
  8. 8.
    Nakamura KM, Haglind EG, Clowes JA, et al. Fracture risk following bariatric surgery: a population-based study. Osteoporos Int. 2014;25(1):151–8.CrossRefGoogle Scholar
  9. 9.
    Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29(7):1507–18.CrossRefGoogle Scholar
  10. 10.
    Yu EW, Wewalka M, Ding SA, et al. Effects of gastric bypass and gastric banding on bone remodeling in obese patients with type 2 diabetes. J Clin Endocrinol Metab. 2016;101(2):714–22.CrossRefGoogle Scholar
  11. 11.
    Muschitz C, Kocijan R, Marterer C, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab. 2015;100(3):891–901.CrossRefGoogle Scholar
  12. 12.
    Hosseinzadeh-Attar MJ, Golpaie A, Janani L, et al. Effect of weight reduction following bariatric surgery on serum visfatin and adiponectin levels in morbidly obese subjects. Obes Facts. 2013;6(2):193–202.CrossRefGoogle Scholar
  13. 13.
    Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95(1):159–66.CrossRefGoogle Scholar
  14. 14.
    Kotidis EV, Koliakos GG, Baltzopoulos VG, et al. Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment—a prospective study. Obes Surg. 2006;16(11):1425–32.CrossRefGoogle Scholar
  15. 15.
    Grenier-Larouche T, Carreau AM, Geloen A, et al. Fatty acid metabolic remodeling during type 2 diabetes remission after bariatric surgery. Diabetes. 2017;66(11):2743–55.CrossRefGoogle Scholar
  16. 16.
    Plourde CE, Grenier-Larouche T, Caron-Dorval D, et al. Biliopancreatic diversion with duodenal switch improves insulin sensitivity and secretion through caloric restriction. Obesity (Silver Spring). 2014;22(8):1838–46.CrossRefGoogle Scholar
  17. 17.
    Tsiftsis DD, Mylonas P, Mead N, et al. Bone mass decreases in morbidly obese women after long limb-biliopancreatic diversion and marked weight loss without secondary hyperparathyroidism. A physiological adaptation to weight loss? Obes Surg. 2009;19(11):1497–503.CrossRefGoogle Scholar
  18. 18.
    Sinha N, Shieh A, Stein EM, et al. Increased PTH and 1.25(OH)(2)D levels associated with increased markers of bone turnover following bariatric surgery. Obesity (Silver Spring). 2011;19(12):2388–93.CrossRefGoogle Scholar
  19. 19.
    Balsa JA, Botella-Carretero JI, Peromingo R, et al. Chronic increase of bone turnover markers after biliopancreatic diversion is related to secondary hyperparathyroidism and weight loss. Relation with bone mineral density. Obes Surg. 2010;20(4):468–73.CrossRefGoogle Scholar
  20. 20.
    Granado-Lorencio F, Simal-Anton A, Salazar-Mosteiro J, et al. Time-course changes in bone turnover markers and fat-soluble vitamins after obesity surgery. Obes Surg. 2010;20(11):1524–9.CrossRefGoogle Scholar
  21. 21.
    Marceau P, Biron S, Lebel S, et al. Does bone change after biliopancreatic diversion? J Gastrointest Surg. 2002;6(5):690–8.CrossRefGoogle Scholar
  22. 22.
    Ivaska KK, Heliovaara MK, Ebeling P, et al. The effects of acute hyperinsulinemia on bone metabolism. Endocr Connect. 2015;4(3):155–62.CrossRefGoogle Scholar
  23. 23.
    Biagioni MFG, Mendes AL, Nogueira CR, et al. Bariatric Roux-En-Y gastric bypass surgery: adipocyte proteins involved in increased bone remodeling in humans. Obes Surg. 2017;27(7):1789–96.CrossRefGoogle Scholar
  24. 24.
    Hofso D, Bollerslev J, Sandbu R, et al. Bone resorption following weight loss surgery is associated with treatment procedure and changes in secreted Wnt antagonists. Endocrine. 2016;53(1):313–21.CrossRefGoogle Scholar
  25. 25.
    Stein EM, Carrelli A, Young P, et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab. 2013;98(2):541–9.CrossRefGoogle Scholar
  26. 26.
    Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Villareal DT, Fontana L, Das SK, et al. Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J Bone Miner Res. 2016;31(1):40–51.CrossRefGoogle Scholar
  28. 28.
    Devlin MJ, Cloutier AM, Thomas NA, et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25(9):2078–88.CrossRefGoogle Scholar
  29. 29.
    Ahn H, Seo DH, Kim HS, et al. Calorie restriction aggravated cortical and trabecular bone architecture in ovariectomy-induced estrogen-deficient rats. Nutr Res. 2014;34(8):707–13.CrossRefGoogle Scholar
  30. 30.
    Murri M, Garcia-Fuentes E, Garcia-Almeida JM, et al. Changes in oxidative stress and insulin resistance in morbidly obese patients after bariatric surgery. Obes Surg. 2010;20(3):363–8.CrossRefGoogle Scholar
  31. 31.
    Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468–77.CrossRefGoogle Scholar
  32. 32.
    O'Flaherty EJ. Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicol Sci. 2000;55(1):171–88.CrossRefGoogle Scholar
  33. 33.
    Rodriguez-Carmona Y, Lopez-Alavez FJ, Gonzalez-Garay AG, et al. Bone mineral density after bariatric surgery. A systematic review. Int J Surg. 2014;12(9):976–82.CrossRefGoogle Scholar
  34. 34.
    Armamento-Villareal R, Sadler C, Napoli N, et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res. 2012;27(5):1215–21.CrossRefGoogle Scholar
  35. 35.
    Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diabetes Endocrinol. 2014;2(2):165–74.CrossRefGoogle Scholar
  36. 36.
    Piec I, Washbourne C, Tang J, et al. How accurate is your sclerostin measurement? Comparison between three commercially available sclerostin ELISA kits. Calcif Tissue Int. 2016;98(6):546–55.CrossRefGoogle Scholar
  37. 37.
    Topart P, Becouarn G, Ritz P. Weight loss is more sustained after biliopancreatic diversion with duodenal switch than Roux-en-Y gastric bypass in superobese patients. Surg Obes Relat Dis. 2013;9(4):526–30.CrossRefGoogle Scholar
  38. 38.
    Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8:Cd003641.Google Scholar
  39. 39.
    Neumann E, Muller-Ladner U, Frommer KW. Inflammation and bone metabolism. Z Rheumatol. 2014;73(4):342–8.CrossRefGoogle Scholar
  40. 40.
    Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.CrossRefGoogle Scholar
  41. 41.
    Meek CL, Lewis HB, Reimann F, et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.CrossRefGoogle Scholar
  42. 42.
    Valderas JP, Padilla O, Solari S, et al. Feeding and bone turnover in gastric bypass. J Clin Endocrinol Metab. 2014;99(2):491–7.CrossRefGoogle Scholar
  43. 43.
    Tonks KT, White CP, Center JR, et al. Bone turnover is suppressed in insulin resistance, independent of adiposity. J Clin Endocrinol Metab. 2017;102(4):1112–21.CrossRefGoogle Scholar
  44. 44.
    Frost M, Balkau B, Hatunic M, et al. The relationship between bone turnover and insulin sensitivity and secretion: cross-sectional and prospective data from the RISC cohort study. Bone. 2018;108:98–105.CrossRefGoogle Scholar
  45. 45.
    Wei J, Ferron M, Clarke CJ, et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest. 2014;124(4):1–13.CrossRefGoogle Scholar
  46. 46.
    Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19.CrossRefGoogle Scholar
  47. 47.
    Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.CrossRefGoogle Scholar
  48. 48.
    Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.CrossRefGoogle Scholar
  49. 49.
    Yu OH, Richards B, Berger C, et al. The association between sclerostin and incident type 2 diabetes risk: a cohort study. Clin Endocrinol. 2017;86(4):520–5.CrossRefGoogle Scholar
  50. 50.
    Kang J, Boonanantanasarn K, Baek K, et al. Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner. J Periodontal Implant Sci. 2015;45(3):101–10.CrossRefGoogle Scholar
  51. 51.
    Luo XH, Guo LJ, Yuan LQ, et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res. 2005;309(1):99–109.CrossRefGoogle Scholar
  52. 52.
    Kanazawa I, Yamaguchi T, Yano S, et al. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 2007;8:51.CrossRefGoogle Scholar
  53. 53.
    Ye R, Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol Metab. 2013;2(3):133–41.CrossRefGoogle Scholar
  54. 54.
    Lee B, Shao J. Adiponectin and energy homeostasis. Rev Endocr Metab Disord. 2014;15(2):149–56.CrossRefGoogle Scholar
  55. 55.
    Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int. 2008;19(7):905–12.CrossRefGoogle Scholar
  56. 56.
    Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006;21(10):1648–56.CrossRefGoogle Scholar
  57. 57.
    Nissen A, Christensen M, Knop FK, et al. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab. 2014;99(11):E2325–9.CrossRefGoogle Scholar
  58. 58.
    Zhao C, Liang J, Yang Y, et al. The impact of glucagon-like Peptide-1 on bone metabolism and its possible mechanisms. Front Endocrinol (Lausanne). 2017;8:98.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anne-Frédérique Turcotte
    • 1
  • Thomas Grenier-Larouche
    • 2
    • 3
  • Roth-Visal Ung
    • 1
  • David Simonyan
    • 4
  • Anne-Marie Carreau
    • 2
    • 3
  • André C. Carpentier
    • 2
    • 3
  • Fabrice Mac-Way
    • 1
    • 5
  • Laetitia Michou
    • 1
    • 5
  • André Tchernof
    • 1
    • 5
    • 6
    • 7
  • Laurent Biertho
    • 6
    • 8
  • Stefane Lebel
    • 6
    • 8
  • Simon Marceau
    • 6
    • 8
  • Claudia Gagnon
    • 1
    • 5
    • 6
    • 7
    Email author
  1. 1.Endocrinology and Nephrology UnitCHU de Québec Research CentreQuébec CityCanada
  2. 2.CHU de Sherbrooke Research CentreSherbrookeCanada
  3. 3.Department of MedicineUniversité de SherbrookeSherbrookeCanada
  4. 4.Clinical and Evaluative Research PlatformCHU de Québec-Université Laval Research CentreQuébec CityCanada
  5. 5.Department of MedicineUniversité LavalQuébec CityCanada
  6. 6.Québec Heart and Lung Institute Research CentreQuébec CityCanada
  7. 7.Institute of Nutrition and Functional FoodsUniversité LavalQuebec CityCanada
  8. 8.Department of SurgeryUniversité LavalQuébec CityCanada

Personalised recommendations