Advertisement

Obesity Surgery

, Volume 28, Issue 9, pp 2829–2835 | Cite as

Hypoglycemic Effects of Intestinal Electrical Stimulation by Enhancing Nutrient-Stimulated Secretion of GLP-1 in Rats

  • Feng Ye
  • Yi Liu
  • Shiying Li
  • Jiande D. Z. ChenEmail author
Original Contributions
  • 153 Downloads

Abstract

Purpose

To find out the best location for intestinal electrical stimulation (IES) to decrease hyperglycemia, and mechanisms involving intraluminal nutrients and plasma glucagon-like peptide-1 (GLP-1)

Materials and Methods

Eight rats had electrodes implanted at the duodenum and ileums for IES. The oral glucose tolerance test (OGTT) was performed with IES and sham-IES and with/without GLP-1 antagonist, exendin. To study the role of intraluminal nutrients, the experiment was repeated using intraperitoneal glucose tolerance test (IPGTT). Glucagon was administrated in the OGTT/IPGTT to induce temporary hyperglycemia.

Results

(1) In the OGTT, IES at the duodenum reduced blood glucose from 30 to 120 min after oral glucose (P < 0.05, vs. sham-IES) and the hypoglycemic effect was more potent than IES at the ileum. (2) The hypoglycemic effect of IES was absent in IPGTT experiment, suggesting the important role of intraluminal nutrients. (3) An increase in GLP-1 was noted in the OGTT with IES at the duodenum in comparison with sham-IES. Moreover, the blocking effect of exendin suggested the role of GLP-1 in the hypoglycemic effect of IES.

Conclusions

The best stimulation location for IES to decrease hyperglycemia is in the duodenum. The hypoglycemic effect of IES is attributed to the enhancement in nutrient-stimulated release of GLP-1.

Keywords

Intestinal electrical stimulation Obesity Diabetes Glucagon-like peptide-1 Gastrointestinal motility Neuromodulation 

Notes

Funding Information

This study was supported in part by a VA MERIT grant (1I01BX002010).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

A Statement of Animal Rights/Ethical Approval

All procedures in this study were approved by the Animal Care and Use Committee of the Veterans Affairs Medical Center (Oklahoma City, OK).

References

  1. 1.
    Pfeiffer AF, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int. 2014;111(5):69–81. quiz 82Google Scholar
  2. 2.
    Puzziferri N, Roshek 3rd TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42.CrossRefGoogle Scholar
  3. 3.
    Maggard-Gibbons M, Maglione M, Livhits M, et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA. 2013;309(21):2250–61.CrossRefGoogle Scholar
  4. 4.
    Qaseem A, Barry MJ, Humphrey LL, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(4):279–90.CrossRefGoogle Scholar
  5. 5.
    Nathan DM. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62.CrossRefGoogle Scholar
  6. 6.
    Chen JD, Yin J, Wei W. Electrical therapies for gastrointestinal motility disorders. Expert Rev Gastroenterol Hepatol. 2017;11(5):407–18.CrossRefGoogle Scholar
  7. 7.
    Zhao X, Yin J, Chen J, et al. Inhibitory effects and mechanisms of intestinal electrical stimulation on gastric tone, antral contractions, pyloric tone, and gastric emptying in dogs. Am J Physiol Regul Integr Comp Physiol. 2009;296(1):R36–42.CrossRefGoogle Scholar
  8. 8.
    Li S, Zhu W, Zhang S, et al. Chronic intestinal electrical stimulation improves glucose intolerance and insulin resistance in diet-induced obesity rats. Obesity (Silver Spring). 2017;25(6):1061–8.CrossRefGoogle Scholar
  9. 9.
    Wan X, Yin J, Foreman R, et al. An optimized IES method and its inhibitory effects and mechanisms on food intake and body weight in diet-induced obese rats: IES for obesity. Obes Surg. 2017;27(12):3215–22.Google Scholar
  10. 10.
    Ouyang X, Li S, Foreman R, et al. Hyperglycemia-induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil. 2015;27(3):406–15.CrossRefGoogle Scholar
  11. 11.
    Khawaled R, Blumen G, Fabricant G, et al. Intestinal electrical stimulation decreases postprandial blood glucose levels in rats. Surg Obes Relat Dis. 2009;5(6):692–7.CrossRefGoogle Scholar
  12. 12.
    Liu J, Xiang Y, Qiao X, et al. Hypoglycemic effects of intraluminal intestinal electrical stimulation in healthy volunteers. Obes Surg. 2011;21(2):224–30.CrossRefGoogle Scholar
  13. 13.
    Li S, Chen JD. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones. Obes Surg. 2017;27(1):70–7.CrossRefGoogle Scholar
  14. 14.
    Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology. 2009;150(4):1680–7.CrossRefGoogle Scholar
  15. 15.
    Gibbons CH, Goebel-Fabbri A. Microvascular complications associated with rapid improvements in glycemic control in diabetes. Curr Diab Rep. 2017;17(7):48.CrossRefGoogle Scholar
  16. 16.
    Kawanami D, Matoba K, Sango K, et al. Incretin-based therapies for diabetic complications: basic mechanisms and clinical evidence. Int J Mol Sci. 2016;17(8).Google Scholar
  17. 17.
    Pecoits-Filho R, Abensur H, Betônico CC, et al. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol Metab Syndr. 2016;8:50.CrossRefGoogle Scholar
  18. 18.
    Azami M, Sharifi A, Norozi S, et al. Prevalence of diabetes, impaired fasting glucose and impaired glucose tolerance in patients with thalassemia major in Iran: a meta-analysis study. Caspian J Intern Med. 2017;8(1):1–15.Google Scholar
  19. 19.
    Thrasher J. Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Med. 2017;130(6S):S4–17.CrossRefGoogle Scholar
  20. 20.
    Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R78–82.CrossRefGoogle Scholar
  21. 21.
    Aberle J, Busch P, Veigel J, et al. Duodenal electric stimulation: results of a first-in-man study. Obes Surg. 2016;26(2):369–75.CrossRefGoogle Scholar
  22. 22.
    Mearin F, Camilleri M, Malagelada JR. Pyloric dysfunction in diabetics with recurrent nausea and vomiting. Gastroenterology. 1986;90(6):1919–25.CrossRefGoogle Scholar
  23. 23.
    Horowitz M, Edelbroek M, Fraser R, et al. Disordered gastric motor function in diabetes mellitus. Recent insights into prevalence, pathophysiology, clinical relevance, and treatment. Scand J Gastroenterol. 1991;26(7):673–84.CrossRefGoogle Scholar
  24. 24.
    Steinberg BE, Glass L, Shrier A, et al. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue. Philos Trans A Math Phys Eng Sci. 2006;364(1842):1299–311.CrossRefGoogle Scholar
  25. 25.
    Camilleri M, Malagelada JR. Abnormal intestinal motility in diabetics with the gastroparesis syndrome. Eur J Clin Investig. 1984;14(6):420–7.CrossRefGoogle Scholar
  26. 26.
    Nowak TV, Harrington B, Kalbfleisch JH, et al. Evidence for abnormal cholinergic neuromuscular transmission in diabetic rat small intestine. Gastroenterology. 1986;91(1):124–32.CrossRefGoogle Scholar
  27. 27.
    Wang WF, Yin JY, De Dz Chen J. Acceleration of small bowel transit in a canine hypermotility model with intestinal electrical stimulation. J Dig Dis. 2015;16(3):135–42.CrossRefGoogle Scholar
  28. 28.
    Sun Y, Chen JD. Intestinal electric stimulation accelerates whole gut transit and promotes fat excrement in conscious rats. Int J Obes. 2009;33(8):817–23.CrossRefGoogle Scholar
  29. 29.
    Foster C, Costill DL, Fink WJ. Gastric emptying characteristics of glucose and glucose polymer solutions. Res Q Exerc Sport. 1980;51(2):299–305.CrossRefGoogle Scholar
  30. 30.
    Sandoval D, Dunki-Jacobs A, Sorrell J, et al. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil. 2013;25(8):700–5.CrossRefGoogle Scholar
  31. 31.
    Gribble FM, Reimann F. Signalling in the gut endocrine axis. Physiol Behav. 2017;176:183–8.CrossRefGoogle Scholar
  32. 32.
    Vahl T, D'Alessio D. Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):461–8.Google Scholar
  33. 33.
    MacDonald PE, El-Kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(Suppl 3):S434–42.CrossRefGoogle Scholar
  34. 34.
    Orskov C. Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia. 1992;35(8):701–11.Google Scholar
  35. 35.
    Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev. 2002;18(6):451–63.CrossRefGoogle Scholar
  36. 36.
    Kim DS, Choi HI, Wang Y, et al. A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant. 2017;26(9):1560–71.CrossRefGoogle Scholar
  37. 37.
    Mojsov S, Weir GC, Habener J. Insulinotropin: glucagon-like peptide 1 (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79(2):616–9.CrossRefGoogle Scholar
  38. 38.
    Yin J, Kuang J, Chandalia MT, et al. Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R332–9.CrossRefGoogle Scholar
  39. 39.
    Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest. 2005;115(12):3554–63.CrossRefGoogle Scholar
  40. 40.
    Guglielmi V, Sbraccia P. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products. Eat Weight Disord. 2017;22(2):231–40.CrossRefGoogle Scholar
  41. 41.
    Wootten D, Reynolds CA, Smith KJ, et al. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem Pharmacol. 2016;118:68–87.CrossRefGoogle Scholar
  42. 42.
    Nance KD, Days EL, Weaver CD, et al. Discovery of a novel series of orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonists based on a 1,3-disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione core. J Med Chem. 2017;60(4):1611–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Feng Ye
    • 1
    • 2
    • 3
  • Yi Liu
    • 1
    • 2
    • 3
  • Shiying Li
    • 1
  • Jiande D. Z. Chen
    • 1
    • 3
    Email author
  1. 1.Veterans Research and Education FoundationVA Medical CenterOklahoma CityUSA
  2. 2.The 1st Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Division of Gastroenterology and HepatologyJohns Hopkins Center for Neurogastroenterology, John’s Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations