Advertisement

Obesity Surgery

, Volume 28, Issue 9, pp 2705–2711 | Cite as

FABP2, LEPR223, LEP656, and FTO Polymorphisms: Effect on Weight Loss 2 Years After Bariatric Surgery

  • Natália Luiza KopsEmail author
  • Manoela A. Vivan
  • Jaqueline D. C. Horvath
  • Mariana L. D. de Castro
  • Rogério Friedman
Original Contributions
  • 149 Downloads

Abstract

Purpose

Differences in weight loss outcomes after bariatric surgery may be related to individual preoperative characteristics. The aim of this study was to evaluate the potential effect of fatty acid binding protein-2 (rs1799883), leptin receptor (LEP223, rs1137101 and LEP656, rs1805094), and fat mass and obesity-related (rs9939609) genotypes on weight loss 2 years after bariatric surgery in Brazilian patients.

Materials and Methods

Prospective observational study involving 105 patients (lost to follow-up, 25.7%). In the preoperative period, patients were clinically evaluated and a fasting blood sample for genetic analysis (by real-time DNA amplification technique) was collected. From the patient’s medical records, follow-up weight loss (3, 6, 12, 24 months) was obtained. Percentage of excess weight loss (%EWL) was examined by pairwise comparison across the polymorphisms.

Results

At baseline, the mean weight was 127.5 (23.3) kg and age 43.1 (10.9) years old. The %EWL was significant over time (p < 0.01). Only the LEP223 genotype showed association (p < 0.01). Up to 6 months after surgery, no differences were observed. At 12 months, a significant difference (p = 0.03) between AA (n = 19) and GG (n = 34) groups was observed, with 76.5% EWL versus 52.0%, respectively. This difference remained at 24 months. Other genotypes did not present any significant association.

Conclusions

There is a different evolution of weight loss in carriers of the LEP223 after bariatric surgery. The AA genotype seems to be associated with a higher weight loss. However, this pattern was evident only at 12 months after surgery.

Keywords

Bariatric surgery Weight loss Polymorphism Genotype 

Notes

Author Contribution

The manuscript has been read and approved by all authors.

Funding Information

This work was supported by Fundo de Incentivo à Pesquisa e Eventos do Hospital de Clínicas de Porto Alegre (no. 12-0232), Conselho Nacional de Desenvolvimento Científico e Tecnológico (N. L. K., no. 119697, 2012), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (J. D. C. H., no. 118907, 2008).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.  https://doi.org/10.1016/S0140-6736(17)32129-3.CrossRefGoogle Scholar
  2. 2.
    Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde. Vigitel Brasil 2016: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico : estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2016 – Brasília: Ministério da Saúde, 2017. n.d.Google Scholar
  3. 3.
    Número de cirurgias bariátricas no Brasil cresce 7,5% em 2016 | n.d. http://www.sbcbm.org.br/wordpress/numero-de-cirurgias-bariatricas-no-brasil-cresce-75-em-2016/# (accessed October 13, 2017).Google Scholar
  4. 4.
    Albaugh VL, Flynn CR, Tamboli RA, et al. Recent advances in metabolic and bariatric surgery. F1000Research. 2016;5  https://doi.org/10.12688/f1000research.7240.1.
  5. 5.
    Wimmelmann CL, Dela F, Mortensen EL. Psychological predictors of weight loss after bariatric surgery: a review of the recent research. Obes Res Clin Pract. 2014;8:e299–313.  https://doi.org/10.1016/j.orcp.2013.09.003.CrossRefGoogle Scholar
  6. 6.
    Melton GB, Steele KE, Schweitzer MA, et al. Suboptimal weight loss after gastric bypass surgery: correlation of demographics, comorbidities, and insurance status with outcomes. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2008;12:250–5.  https://doi.org/10.1007/s11605-007-0427-1.CrossRefGoogle Scholar
  7. 7.
    Kronenberg F, Paulweber B, Lamina C. Genomwide association studies on obesity: what can we learn from these studies. Wien Med Wochenschr 1946 2016;166:88–94. doi: https://doi.org/10.1007/s10354-015-0429-7.
  8. 8.
    Ockner RK, Manning JA, Poppenhausen RB, et al. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science. 1972;177:56–8.CrossRefGoogle Scholar
  9. 9.
    Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care. 2014;17:124–9.  https://doi.org/10.1097/MCO.0000000000000031.CrossRefGoogle Scholar
  10. 10.
    Kolaczynski JW, Ohannesian JP, Considine RV, et al. Response of leptin to short-term and prolonged overfeeding in humans. J Clin Endocrinol Metab. 1996;81:4162–5.  https://doi.org/10.1210/jcem.81.11.8923877.CrossRefGoogle Scholar
  11. 11.
    Reference SNP (refSNP) Cluster report: rs1137101 ** With Benign allele ** n.d. https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1137101 (accessed October 13, 2017).
  12. 12.
    Scuteri A, Sanna S, Chen W-M, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115.  https://doi.org/10.1371/journal.pgen.0030115.CrossRefGoogle Scholar
  13. 13.
    Lu Y, Loos RJ. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med. 2013;5:55.  https://doi.org/10.1186/gm459.CrossRefGoogle Scholar
  14. 14.
    Sociedade Brasileira de Cirurgia Bariátrica e Metabólica. Consenso Brasileiro Multissocietário em Cirurgia da Obesidade. 2006. < http://www.sbcb.org.br/imagens/pdf/consenso_baraitrico_brasileiro.pdf> (accessed January 7, 2018).
  15. 15.
    Associação Brasileira de Empresas de Pesquisa (ABEP). Critério de Classificação Econômica Brasil 2012. http://www.abep.org/criterio-brasil (accessed September 7, 2017).
  16. 16.
    Validação do Questionário Internacional de Nível de Atividade Física (IPAQ - Versão 6): Estudo Piloto em Adultos Jovens Brasileiros n.d. http://www.bibliotekevirtual.org/index.php/2013-02-07-03-02-35/2013-02-07-03-03-11/1543-rbcm/v09n03/16369-validacao-do-questionario-internacional-de-nivel-de-atividade-fisica-ipaq-versao-6-estudo-piloto-em-adultos-jovens-brasileiros.html (accessed September 30, 2017).Google Scholar
  17. 17.
    Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Orientações para a coleta e análise de dados antropométricos em serviços de saúde : Norma Técnica do Sistema de Vigilância Alimentar e Nutricional - SISVAN / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. – Brasília : Ministério da Saúde, 2011. 76 p. : il. – (Série G. Estatística e Informação em Saúde) n.d.Google Scholar
  18. 18.
    Moulin CC, Tiskievicz F, Zelmanovitz T, et al. Use of weighed diet records in the evaluation of diets with different protein contents in patients with type 2 diabetes. Am J Clin Nutr. 1998;67:853–7.CrossRefGoogle Scholar
  19. 19.
    Kops NL, Correia Horvath JD, de Castro MLD, et al. Anthropometric and lipid profile of individuals with severe obesity carrying the fatty acid-binding protein-2 Thr54 allele. Nutr Burbank Los Angel Cty Calif. 2017;41:45–50.  https://doi.org/10.1016/j.nut.2017.01.013.CrossRefGoogle Scholar
  20. 20.
    Medicine I of. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. 2002. doi: https://doi.org/10.17226/10490.
  21. 21.
    Novais PFS, Weber TK, Lemke N, et al. Gene polymorphisms as a predictor of body weight loss after Roux-en-Y gastric bypass surgery among obese women. Obes Res Clin Pract. 2016;10:724–7.  https://doi.org/10.1016/j.orcp.2016.07.002.CrossRefGoogle Scholar
  22. 22.
    Clément K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.  https://doi.org/10.1038/32911.CrossRefGoogle Scholar
  23. 23.
    de Luis DA, Aller R, Conde R, et al. Effects of RS9939609 gene variant in FTO gene on weight loss and cardiovascular risk factors after biliopancreatic diversion surgery. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2012;16:1194–8.  https://doi.org/10.1007/s11605-012-1829-2.CrossRefGoogle Scholar
  24. 24.
    Rodrigues GK, Resende CMM, Durso DF, et al. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutr Burbank Los Angel Cty Calif. 2015;31:1344–50.  https://doi.org/10.1016/j.nut.2015.05.020.CrossRefGoogle Scholar
  25. 25.
    Liou T-H, Chen H-H, Wang W, et al. ESR1, FTO, and UCP2 genes interact with bariatric surgery affecting weight loss and glycemic control in severely obese patients. Obes Surg. 2011;21:1758–65.  https://doi.org/10.1007/s11695-011-0457-3.CrossRefGoogle Scholar
  26. 26.
    Sarzynski MA, Jacobson P, Rankinen T, et al. Associations of markers in 11 obesity candidate genes with maximal weight loss and weight regain in the SOS bariatric surgery cases. Int J Obes. 2011;35:676–83.  https://doi.org/10.1038/ijo.2010.166.CrossRefGoogle Scholar
  27. 27.
    de Luis DA, Sagrado MG, Izaola O, et al. Influence of Ala54Thr polymorphism of fatty acid-binding protein-2 on clinical results of biliopancreatic diversion. Nutr Burbank Los Angel Cty Calif. 2008;24:300–4.  https://doi.org/10.1016/j.nut.2007.12.009.CrossRefGoogle Scholar
  28. 28.
    Berti LV, Campos J, Ramos A, et al. Position of the SBCBM—nomenclature and definition of outcomes of bariatric and metabolic surgery. ABCD Arq Bras Cir Dig São Paulo. 2015;28:2–2.  https://doi.org/10.1590/S0102-6720201500S100002.CrossRefGoogle Scholar
  29. 29.
    van de Laar AWJM, Acherman YIZ. Weight loss percentile charts of large representative series: a benchmark defining sufficient weight loss challenging current criteria for success of bariatric surgery. Obes Surg. 2014;24:727–34.  https://doi.org/10.1007/s11695-013-1130-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natália Luiza Kops
    • 1
    • 2
    Email author
  • Manoela A. Vivan
    • 3
  • Jaqueline D. C. Horvath
    • 1
    • 2
  • Mariana L. D. de Castro
    • 1
  • Rogério Friedman
    • 1
    • 4
  1. 1.Post-Graduate Program in EndocrinologyFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Hospital Moinhos de VentoPorto AlegreBrazil
  3. 3.Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  4. 4.Endocrinology DivisionHospital de Clínicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations