Obesity Surgery

, Volume 27, Issue 12, pp 3281–3291 | Cite as

Bariatric Surgery Resistance: Using Preoperative Lifestyle Medicine and/or Pharmacology for Metabolic Responsiveness

  • Nicole M. Gilbertson
  • Andrew S. Paisley
  • Sibylle Kranz
  • Arthur Weltman
  • Jennifer L. Kirby
  • Peter T. Hallowell
  • Steven K. Malin
Review Article


Bariatric surgery is an effective and durable treatment for individuals with obesity and its associated comorbidities. However, not all patients meet weight loss and/or cardiometabolic goals following bariatric surgery, suggesting that some people are bariatric surgery resistant. The reason for this resistance is unclear, but potential factors, such as adiposity-derived inflammation, insulin resistance, hyperglycemia, and aerobic fitness prior to surgery, have been related to blunted surgery responsiveness. Exercise, diet, and/or pharmacology are effective at reducing inflammation and improving insulin action as well as physical function. Herein, we present data that supports the novel hypothesis that intervening prior to surgery can enhance disease resolution in people who are resistant to bariatric surgery.


Bariatric surgery Insulin resistance Diet Exercise Pharmacology Weight loss surgery 



We thank the members of the Applied Metabolism and Physiology Laboratory for the helpful discussion on the manuscript.

Author Contribution

N.G. and S.K.M. were primarily responsible for the writing of the manuscript. A.P., S.K., A.W., J.K., and P.H. reviewed and edited the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethnical Approval Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement

Does not apply.


  1. 1.
    Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806–14.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci. 2015;129(12):1083–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.PubMedGoogle Scholar
  4. 4.
    Greenfield JR, Campbell LV. Insulin resistance and obesity. Clin Dermatol. 2004;22(4):289–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. 2009;28(5):822–31.CrossRefGoogle Scholar
  6. 6.
    Schelbert KB. Comorbidities of obesity. Prim Care. 2009;36(2):271–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Barte JC, ter Bogt NC, Bogers RP, et al. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes Rev. 2010;11(12):899–906.PubMedCrossRefGoogle Scholar
  8. 8.
    Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev. 2016;44(1):4–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Solomon TP, Thyfault JP. Type 2 diabetes sits in a chair. Diabetes Obes Metab. 2013;15(11):987–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Li JF, Lai DD, Lin ZH, et al. Comparison of the long-term results of Roux-en-Y gastric bypass and sleeve gastrectomy for morbid obesity: a systematic review and meta-analysis of randomized and nonrandomized trials. Surg Laparosc Endosc Percutan Tech. 2014;24(1):1–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Robinson AH, Adler S, Stevens HB, et al. What variables are associated with successful weight loss outcomes for bariatric surgery after 1 year? Surg Obes Relat Dis. 2014;10(4):697–704.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Malin SK, Solomon TP, Blaszczak A, et al. Pancreatic beta-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metab. 2013;305(10):E1248–54.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Peluso L, Vanek VW. Efficacy of gastric bypass in the treatment of obesity-related comorbidities. Nutr Clin Pract. 2007;22(1):22–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232(4):515–29.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ma Y, Pagoto SL, Olendzki BC, et al. Predictors of weight status following laparoscopic gastric bypass. Obes Surg. 2006;16(9):1227–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Hatoum IJ, Stein HK, Merrifield BF, et al. Capacity for physical activity predicts weight loss after Roux-en-Y gastric bypass. Obesity (Silver Spring). 2009;17(1):92–9.CrossRefGoogle Scholar
  18. 18.
    Sugerman HJ, DeMaria EJ, Kellum JM, et al. Effects of bariatric surgery in older patients. Ann Surg. 2004;240(2):243–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Livingston EH, Huerta S, Arthur D, et al. Male gender is a predictor of morbidity and age a predictor of mortality for patients undergoing gastric bypass surgery. Ann Surg. 2002;236(5):576–82.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):67–81.CrossRefGoogle Scholar
  21. 21.
    Bijlsma AY, Meskers CG, van Heemst D, et al. Diagnostic criteria for sarcopenia relate differently to insulin resistance. Age. 2013;35(6):2367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hagobian TA, Evero N. Exercise and weight loss: what is the evidence of sex differences? Curr Obes Rep. 2013;2(1):86–92.CrossRefGoogle Scholar
  23. 23.
    Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.PubMedCrossRefGoogle Scholar
  24. 24.
    Hellstrom L, Wahrenberg H, Hruska K, et al. Mechanisms behind gender differences in circulating leptin levels. J Intern Med. 2000;247(4):457–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Kennedy A, Gettys TW, Watson P, et al. The metabolic significance of leptin in humans: gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. J Clin Endocrinol Metab. 1997;82(4):1293–300.PubMedGoogle Scholar
  26. 26.
    Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med. 1999;130(8):671–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Faerch K, Borch-Johnsen K, Vaag A, et al. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study. Diabetologia. 2010;53(5):858–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Makovey J, Naganathan V, Seibel M, et al. Gender differences in plasma ghrelin and its relations to body composition and bone—an opposite-sex twin study. Clin Endocrinol. 2007;66(4):530–7.Google Scholar
  29. 29.
    Purnell JQ, Weigle DS, Breen P, et al. Ghrelin levels correlate with insulin levels, insulin resistance, and high-density lipoprotein cholesterol, but not with gender, menopausal status, or cortisol levels in humans. J Clin Endocrinol Metab. 2003;88(12):5747–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Anderson WA, Greene GW, Forse RA, et al. Weight loss and health outcomes in African Americans and whites after gastric bypass surgery. Obesity. 2007;15(6):1455–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Parikh M, Lo H, Chang C, et al. Comparison of outcomes after laparoscopic adjustable gastric banding in African-Americans and whites. Surg Obes Relat Dis. 2006;2(6):607–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Cossrow N, Falkner B. Race/ethnic issues in obesity and obesity-related comorbidities. J Clin Endocrinol Metab. 2004;89(6):2590–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Olson NC, Callas PW, Hanley AJ, et al. Circulating levels of TNF-alpha are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab. 2012;97(3):1032–40.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):745–51.Google Scholar
  35. 35.
    Lindquist CH, Gower BA, Goran MI. Role of dietary factors in ethnic differences in early risk of cardiovascular disease and type 2 diabetes. Am J Clin Nutr. 2000;71(3):725–32.PubMedGoogle Scholar
  36. 36.
    Conjeevaram HS, Kleiner DE, Everhart JE, et al. Race, insulin resistance and hepatic steatosis in chronic hepatitis C. Hepatology. 2007;45(1):80–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Gullick AA, Graham LA, Richman J, et al. Association of race and socioeconomic status with outcomes following laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2015;25(4):705–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Lutfi R, Torquati A, Sekhar N, et al. Predictors of success after laparoscopic gastric bypass: a multivariate analysis of socioeconomic factors. Surg Endosc. 2006;20(6):864–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Kinzl JF, Schrattenecker M, Traweger C, et al. Psychosocial predictors of weight loss after bariatric surgery. Obes Surg. 2006;16(12):1609–14.PubMedCrossRefGoogle Scholar
  40. 40.
    van Hout GC, Verschure SK, van Heck GL. Psychosocial predictors of success following bariatric surgery. Obes Surg. 2005;15(4):552–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Brethauer SA, Heneghan HM, Eldar S, et al. Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg Endosc. 2011;25(8):2650–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Madsen EL, Rissanen A, Bruun JM, et al. Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. Eur J Endocrinol. 2008;158(2):179–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Heneghan HM, Huang H, Kashyap SR, et al. Reduced cardiovascular risk after bariatric surgery is linked to plasma ceramides, apolipoprotein-B100, and ApoB100/A1 ratio. Surg Obes Relat Dis. 2013;9(1):100–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Malin SK, Bena J, Abood B, et al. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metab. 2014;16(12):1230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hirsch FF, Pareja JC, Geloneze SR, et al. Comparison of metabolic effects of surgical-induced massive weight loss in patients with long-term remission versus non-remission of type 2 diabetes. Obes Surg. 2012;22(6):910–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochem Biophys Res Commun. 2012;425(3):560–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86(8):3815–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Gavin TP, Ernst JM, Caudill SE, et al. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after Roux-en Y gastric bypass. Surgery. 2014;155(6):1036–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Vella A. Beta-cell function after weight-loss induced by bariatric surgery. Physiology. 2014;29(2):84–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Torquati A, Lutfi R, Abumrad N, et al. Roux-en-Y gastric bypass surgery the most effective treatment for type 2 diabetes mellitus in morbidly obese patients? J Gastrointest Surg. 2005;9(8):1112–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Hall TC, Pellen MG, Sedman PC, et al. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20(9):1245–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang GF, Yan YX, Xu N, et al. Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: a meta-analysis. Obes Surg. 2015;25(2):199–208.PubMedCrossRefGoogle Scholar
  56. 56.
    Mehaffey JH, Mullen MG, Mehaffey RL, et al. Type 2 diabetes remission following gastric bypass: does DiaRem stand the test of time? Surg Endosc. 2017;31(2):538–42.Google Scholar
  57. 57.
    Khanna V, Malin SK, Bena J, et al. Adults with long-duration type 2 diabetes have blunted glycemic and beta-cell function improvements after bariatric surgery. Obesity (Silver Spring). 2015;23(3):523–6.CrossRefGoogle Scholar
  58. 58.
    Nguyen NQ, Game P, Bessell J, et al. Outcomes of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. World J Gastroenterol. 2013;19(36):6035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Steinbrook R. Surgery for severe obesity. N Engl J Med. 2004;350(11):1075–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Fernandez AZ, DeMaria EJ, Tichansky DS, et al. Experience with over 3,000 open and laparoscopic bariatric procedures: multivariate analysis of factors related to leak and resultant mortality. Surg Endosc. 2004;18(2):193–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Longitudinal Assessment of Bariatric Surgery (LABS) Consortium, Flum DR, Belle SH, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361(5):445–54.CrossRefGoogle Scholar
  62. 62.
    Jacobi D, Ciangura C, Couet C, et al. Physical activity and weight loss following bariatric surgery. Obes Rev. 2011;12(5):366–77.PubMedCrossRefGoogle Scholar
  63. 63.
    McCullough PA, Gallagher MJ, Dejong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130(2):517–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Bond DS, Jakicic JM, Unick JL, et al. Pre- to postoperative physical activity changes in bariatric surgery patients: self report vs. objective measures. Obesity. 2010;18(12):2395–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Trivax JE, Gallagher MJ, Alexander DV, et al. Poor aerobic fitness predicts complications associated with bariatric surgery. Chest. 2005;128(4)Google Scholar
  66. 66.
    Berglind D, Willmer M, Eriksson U, et al. Longitudinal assessment of physical activity in women undergoing Roux-en-Y gastric bypass. Obes Surg. 2015;25(1):119–25.PubMedCrossRefGoogle Scholar
  67. 67.
    Baillot A, Mampuya WM, Comeau E, et al. Feasibility and impacts of supervised exercise training in subjects with obesity awaiting bariatric surgery: a pilot study. Obes Surg. 2013;23(7):882–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Baillot A, Mampuya WM, Dionne IJ, et al. Impacts of supervised exercise training in addition to interdisciplinary lifestyle management in subjects awaiting bariatric surgery: a randomized controlled study. Obes Surg. 2016;26(11):2602–10.Google Scholar
  69. 69.
    Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Henriksen EJ. Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol. 2002;93(2):788–96.PubMedCrossRefGoogle Scholar
  71. 71.
    Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev. 2004;20(5):383–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:6.Google Scholar
  73. 73.
    Hopps E, Canino B, Caimi G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol. 2011;48(3):183–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Shah M, Snell PG, Rao S, et al. High-volume exercise program in obese bariatric surgery patients: a randomized, controlled trial. Obesity. 2011;19(9):1826–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Coen PM, Tanner CJ, Helbling NL, et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest. 2015;125(1):248–57.PubMedCrossRefGoogle Scholar
  76. 76.
    Coen PM, Menshikova EV, Distefano G, et al. Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes. 2015;64(11):3737–50.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Stegen S, Derave W, Calders P, et al. Physical fitness in morbidly obese patients: effect of gastric bypass surgery and exercise training. Obes Surg. 2011;21(1):61–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Dube JJ, Allison KF, Rousson V, et al. Exercise dose and insulin sensitivity: relevance for diabetes prevention. Med Sci Sports Exerc. 2012;44(5):793–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Houmard JA, Tanner CJ, Slentz CA, et al. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012;97(7):2482–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gletsu-Miller N, Wright BN. Mineral malnutrition following bariatric surgery. Adv Nutr. 2013;4:506–17.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Baldry EL, Leeder PC, Idris IR. Pre-operative dietary restriction for patients undergoing bariatric surgery in the UK: observational study of current practice and dietary effects. Obes Surg. 2014;24(3):416–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Livhits M, Mercado C, Yermilov I, et al. Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes Surg. 2012;22(1):70–89.PubMedCrossRefGoogle Scholar
  84. 84.
    Alami RS, Morton JM, Schuster R, et al. Is there a benefit to preoperative weight loss in gastric bypass patients? A prospective randomized trial. Surg Obes Relat Dis. 2007;3(2):141–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Van Nieuwenhove Y, Dambrauskas Z, Campillo-Soto A, et al. Preoperative very low-calorie diet and operative outcome after laparoscopic gastric bypass: a randomized multicenter study. Arch Surg. 2011;146(11):1300–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Huerta S, Dredar S, Hayden E, et al. Preoperative weight loss decreases the operative time of gastric bypass at a Veterans Administration hospital. Obes Surg. 2008;18(5):508–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Martin LF, Tan TL, Holmes PA, et al. Can morbidly obese patients safely lose weight preoperatively? Am J Surg. 1995;169(2):245–53.PubMedCrossRefGoogle Scholar
  89. 89.
    Pournaras D, Nygren J, Hagstrom-Toft E, et al. Improved glucose metabolism after gastric bypass: evolution of the paradigm. Surg Obes Relat Dis. 2016;12:1457–65.PubMedCrossRefGoogle Scholar
  90. 90.
    Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45(4):600–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Nguyen NT, Longoria M, Gelfand DV, et al. Staged laparoscopic Roux-en-Y: a novel two-stage bariatric operation as an alternative in the super-obese with massively enlarged liver. Obes Surg. 2005;15(7):1077–81.PubMedCrossRefGoogle Scholar
  92. 92.
    van Wissen J, Bakker N, Doodeman HJ, et al. Preoperative methods to reduce liver volume in bariatric surgery: a systematic review. Obes Surg. 2016;26(2):251–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Yki-Jarvinen H. Fat in the liver and insulin resistance. Ann Med. 2005;37(5):347–56.PubMedCrossRefGoogle Scholar
  94. 94.
    Edholm D, Kullberg J, Haenni A, et al. Preoperative 4-week low-calorie diet reduces liver volume and intrahepatic fat, and facilitates laparoscopic gastric bypass in morbidly obese. Obes Surg. 2011;21(3):345–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Brody F, Vaziri K, Garey C, et al. Preoperative liver reduction utilizing a novel nutritional supplement. J Laparoendosc Adv Surg Tech A. 2011;21(6):491–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84(2):304–11.PubMedGoogle Scholar
  97. 97.
    Alvarado R, Alami RS, Hsu G, et al. The impact of preoperative weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15(9):1282–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Dagogo-Jack S, Alberti GM. Management of diabetes mellitus in surgical patients. Diabetes Spectrum. 2002;15(1):44–8.CrossRefGoogle Scholar
  99. 99.
    Gonzalez-Perez J, Sanchez-Leenheer S, Delgado AR, et al. Clinical impact of a 6-week preoperative very low calorie diet on body weight and liver size in morbidly obese patients. Obes Surg. 2013;23(10):1624–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Rector RS, Warner SO, Liu Y, et al. Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am J Physiol Endocrinol Metab. 2007;293(2):500–6.CrossRefGoogle Scholar
  101. 101.
    Coen PM, Goodpaster BH. A role for exercise after bariatric surgery?. Diabetes Obes Metab 2016;18(1):16–23.Google Scholar
  102. 102.
    Dodson RM, Firoozmand A, Hyder O, et al. Impact of sarcopenia on outcomes following intra-arterial therapy of hepatic malignancies. J Gastrointest Surg. 2013;17(12):2123–32.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Psutka SP, Carrasco A, Schmit GD, et al. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. Cancer 2014;120(18):2910–18.Google Scholar
  104. 104.
    Carbone JW, McClung JP, Pasiakos SM. Skeletal muscle responses to negative energy balance: effects of dietary protein. Adv Nutr. 2012;3(2):119–26.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–29.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ross R, Pedwell H, Rissanen J. Effects of energy restriction and exercise on skeletal muscle and adipose tissue in women as measured by magnetic resonance imaging. Am J Clin Nutr. 1995;61(6):1179–85.PubMedGoogle Scholar
  107. 107.
    Pan DA, Lillioja S, Kriketos AD, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Yokoyama H, Emoto M, Araki T, et al. Effect of aerobic exercise on plasma adiponectin levels and insulin resistance in type 2 diabetes. Diabetes Care. 2004;27(7):1756–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Haus JM, Solomon TP, Marchetti CM, et al. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. J Clin Endocrinol Metab. 2010;95(1):323–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Tamura Y, Tanaka Y, Sato F, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2005;90(6):3191–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Torgerson JS, Hauptman J, Boldrin MN, et al. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2(11):911–22.PubMedCrossRefGoogle Scholar
  113. 113.
    Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.PubMedCrossRefGoogle Scholar
  114. 114.
    Garvey WT, Ryan DH, Henry R, et al. Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care. 2014;37(4):912–21.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Martin CK, Redman LM, Zhang J, et al. Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J Clin Endocrinol Metab. 2011;96(3):837–45.PubMedCrossRefGoogle Scholar
  116. 116.
    O’Neil PM, Smith SR, Weissman NJ, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity. 2012;20(7):1426–36.PubMedCrossRefGoogle Scholar
  117. 117.
    Smith SR, Fujioka K, Gupta AK, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15(9):863–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297(1–2):127–36.PubMedCrossRefGoogle Scholar
  120. 120.
    Wood GC, Gerhard GS, Benotti P, et al. Preoperative use of incretins is associated with increased diabetes remission after RYGB surgery among patients taking insulin: a retrospective cohort analysis. Ann Surg. 2015;261(1):125–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Davies MJ, Bergenstal R, Bode B, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE Diabetes Randomized Clinical Trial. JAMA. 2015;314(7):687–99.PubMedCrossRefGoogle Scholar
  122. 122.
    Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes. 2013;37(11):1443–51.CrossRefGoogle Scholar
  123. 123.
    Rhee MK, Herrick K, Ziemer DC, et al. Many Americans have pre-diabetes and should be considered for metformin therapy. Diabetes Care. 2010;33(1):49–54.PubMedCrossRefGoogle Scholar
  124. 124.
    DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256–63.PubMedCrossRefGoogle Scholar
  126. 126.
    Chaggar PS, Shaw SM, Williams SG. Review article: thiazolidinediones and heart failure. Diab Vasc Dis Res. 2009;6(3):146–52.PubMedCrossRefGoogle Scholar
  127. 127.
    Dormandy J, Bhattacharya M, van Troostenburg de Bruyn AR, et al. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf. 2009;32(3):187–202.PubMedCrossRefGoogle Scholar
  128. 128.
    Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–43.PubMedCrossRefGoogle Scholar
  129. 129.
    Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.PubMedCrossRefGoogle Scholar
  130. 130.
    Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRefGoogle Scholar
  131. 131.
    Bennett WL, Maruthur NM, Singh S, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Pi-Sunyer X, Blackburn G, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.PubMedCrossRefGoogle Scholar
  134. 134.
    Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.PubMedCrossRefGoogle Scholar
  135. 135.
    McGrice M, Don Paul K. Interventions to improve long-term weight loss in patients following bariatric surgery: challenges and solutions. Diabetes Metab Syndr Obes. 2015;8:263–74.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Stein J, Stier C, Raab H, et al. Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther. 2014;40(6):582–609.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nicole M. Gilbertson
    • 1
  • Andrew S. Paisley
    • 1
  • Sibylle Kranz
    • 1
  • Arthur Weltman
    • 1
    • 2
  • Jennifer L. Kirby
    • 2
  • Peter T. Hallowell
    • 3
  • Steven K. Malin
    • 1
    • 2
    • 4
  1. 1.Department of KinesiologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Division of Endocrinology and Metabolism, Department of MedicineUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of SurgeryUniversity of VirginiaCharlottesvilleUSA
  4. 4.Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations