Neuropsychological Functioning in Mid-life Treatment-Seeking Adults with Obesity: a Cross-sectional Study

  • Christina Prickett
  • Renerus Stolwyk
  • Paul O’Brien
  • Leah Brennan
Original Contributions
  • 105 Downloads

Abstract

Objective

The aim of this study is to compare cognitive functioning between treatment-seeking individuals with obesity and healthy-weight adults.

Design and Methods

Sixty-nine bariatric surgery candidates (BMI > 30 kg/m2) and 65 healthy-weight control participants (BMI 18.5–25 kg/m2) completed a neuropsychological battery and a self-report psychosocial questionnaire battery.

Results

Hierarchical regression analyses indicated that obesity was predictive of poorer performance in the domains of psychomotor speed (p = .043), verbal learning (p < .001), verbal memory (p = .002), complex attention (p = .002), semantic verbal fluency (p = .009), working memory (p = .002), and concept formation and set-shifting (p = .003), independent of education. Obesity remained a significant predictor of performance in each of these domains, except verbal memory, following control for obesity-related comorbidities. Obesity was not predictive of visual construction, visual memory, phonemic verbal fluency or inhibition performance. Individuals with obesity also had significantly poorer decision-making compared to healthy-weight controls.

Conclusions

Findings support the contribution of obesity to selective aspects of mid-life cognition after controlling for obesity-related comorbidities, while addressing limitations of previous research including employment of an adequate sample, a healthy-weight control group and stringent exclusion criteria. Further investigation into the functional impact of such deficits, the mechanisms underlying these poorer cognitive outcomes and the impact of weight-loss on cognition is required.

Keywords

Obesity Body mass index Cognition Bariatric surgery Executive function CVD risk factors 

Supplementary material

11695_2017_2894_MOESM1_ESM.docx (15 kb)
Table S1(DOCX 14 kb)

References

  1. 1.
    Barness LA, Opitz JM, Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am J Med Genet. 2007;143A(24):3016–34. https://doi.org/10.1002/ajmg.a.32035.CrossRefPubMedGoogle Scholar
  2. 2.
    World Health Organization. Fact sheet: Obesity and overweight. Geneva: World Health Organization; 2013 [cited 2014 08/01/2014] Available from: http://www.who.int/mediacentre/factsheets/fs311/en/.
  3. 3.
    Preiss K, Brennan L, Clarke D. A systematic review of variables associated with the relationship between obesity and depression. Obes Rev. 2013;14(11):906–18. https://doi.org/10.1111/obr.12052.CrossRefPubMedGoogle Scholar
  4. 4.
    Anstey KJ, Cherbuin N, Budge M, et al. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426-37. https://doi.org/10.1111/j.1467-789X.2010.00825.x.
  5. 5.
    Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Prickett C, Brennan L, Stolwyk R. Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract. 2015;9(2):93–113. https://doi.org/10.1016/j.orcp.2014.05.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman KE, Ashmore JA, Applegate KL. Recent experiences of weight-based stigmatization in a weight loss surgery population: psychological and behavioral correlates. Obesity. 2008;16(Suppl 2):S69–74. https://doi.org/10.1038/oby.2008.457.CrossRefPubMedGoogle Scholar
  8. 8.
    Dalton M, Cameron AJ, Zimmet PZ, et al. Waist circumference, waist–hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J Intern Med. 2003;254(6):555–63. https://doi.org/10.1111/j.1365-2796.2003.01229.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry. 2001;178:200–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4(8):487–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Panza F, D’Introno A, Colacicco AM, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Rev. 2006;51(2):275–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26(8):1044–80. https://doi.org/10.1080/13803390490514875.CrossRefPubMedGoogle Scholar
  13. 13.
    National Health and Medical Research Council. Clinical practice guidelines for the management of overweight and obesity in adults, adolescents and children in Australia. Canberra: National Health and Medical Research Council; 2013.Google Scholar
  14. 14.
    WHO. BMI classification Geneva: World Health Organization; 2014 [cited 2014 08/01/2013] Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.
  15. 15.
    Parsons OA, Prigatano GP. Methodological considerations in clinical neuropsychological research. J Consult Clin Psychol. 1978;46(4):608–19. https://doi.org/10.1037/0022-006x.46.4.608.CrossRefPubMedGoogle Scholar
  16. 16.
    Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Hann DM, Jacobsen PB, Azzarello LM, et al. Measurement of fatigue in cancer patients: development and validation of the fatigue symptom inventory. Qual Life Res. 1998;7(4):301–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Inquisit 3 [Computer software]. 2011. Retrieved from http://www.millisecond.com.
  19. 19.
    Smith A. Symbol digit modalities test. Los Angeles: Western Psychological Services; 1991.Google Scholar
  20. 20.
    Delis DC, Kramer JH, Kaplan E, et al. California verbal learning test— second edition, adult version. San Antonio: Peason; 2000.Google Scholar
  21. 21.
    Meyers JE, Meyers KR. Rey complex figure test and recognition trial. Odessa: Psychological Assessment Resources; 1995.Google Scholar
  22. 22.
    Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19(5):393–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Benton AL, Hamsher K, Sivan AB. Multilingual aphasia examination. 3rd ed. San Antonio: Psychological Corporation; 1994.Google Scholar
  24. 24.
    Jaeggi SM, Studer-Luethi B, Buschkuehl M, et al. The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence. 2010;38(6):625–35. https://doi.org/10.1016/j.intell.2010.09.001.CrossRefGoogle Scholar
  25. 25.
    Bechara A, Damasio AR, Damasio H, et al. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50(1–3):7–15. https://doi.org/10.1016/0010-0277(94)90018-3.CrossRefPubMedGoogle Scholar
  26. 26.
    Verbruggen F, Logan GD, Stevens MA. STOP-IT: Windows executable software for the stop-signal paradigm. Behav Res Methods. 2008;40(2):479–83.CrossRefGoogle Scholar
  27. 27.
    Heaton RK, Chelune GJ, Talley JL, et al. Wisconsin card sorting test (WCST) manual, revised and expanded. Odessa: Psychological Assessment Resources; 1993.Google Scholar
  28. 28.
    Faul F, Erdfelder E, Lang AG, et al. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Grasby PM, Frith CD, Friston KJ, et al. Functional mapping of brain areas implicated in auditory—verbal memory function. Brain. 1993;116(Pt 1):1–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Moll J, de Oliveira-Souza R, Moll FT, et al. The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq Neuropsiquiatr. 2002;60(4):900–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Owen AM, McMillan KM, Laird AR, et al. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59. https://doi.org/10.1002/hbm.20131.CrossRefPubMedGoogle Scholar
  32. 32.
    Berman KF, Ostrem JL, Randolph C, et al. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia. 1995;33(8):1027–46. https://doi.org/10.1016/0028-3932(95)00035-2.CrossRefPubMedGoogle Scholar
  33. 33.
    Li X, Lu Z-L, D'Argembeau A, et al. The Iowa gambling task in fMRI images. Hum Brain Mapp. 2010;31(3):410–23. https://doi.org/10.1002/hbm.20875.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang G-J, Yang J, Volkow ND, et al. Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci. 2006;103(42):15641–5. https://doi.org/10.1073/pnas.0601977103.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Volkow ND, Wang G-J, Telang F, et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring, Md). 2009;17(1):60–5.CrossRefGoogle Scholar
  36. 36.
    Willeumier KC, Taylor DV, Amen DG. Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity (Silver Spring, Md). 2011;19(5):1095–7.CrossRefGoogle Scholar
  37. 37.
    Raji CA, Ho AJ, Parikshak NN, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353–64.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Sweat V, Starr V, Bruehl H, et al. C-reactive protein is linked to lower cognitive performance in overweight and obese women. Inflammation. 2008;31(3):198–207. https://doi.org/10.1007/s10753-008-9065-3.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jefferson AL, Massaro JM, Wolf PA, et al. Inflammatory biomarkers are associated with total brain volume: the Framingham heart study. Neurology. 2007;68(13):1032–8. https://doi.org/10.1212/01.wnl.0000257815.20548.df.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bruehl H, Wolf OT, Sweat V, et al. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 2009;1280:186–94.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bose M, Olivan B, Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009;16(5):340–6. https://doi.org/10.1097/MED.0b013e32832fa137.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ward MA, Carlsson CM, Trivedi MA, et al. The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurology. 2005;5:23.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gunstad J, Paul RH, Cohen RA, et al. Relationship between body mass index and brain volume in healthy adults. Int J Neurosci. 2008;118(11):1582–93.CrossRefGoogle Scholar
  44. 44.
    Sellbom KS, Gunstad J. Cognitive function and decline in obesity. J Alzheimers Dis. 2012;30(Suppl 2):S89–95. https://doi.org/10.3233/jad-2011-111073.PubMedGoogle Scholar
  45. 45.
    Galioto R, Gunstad J, Heinberg LJ, et al. Adherence and weight loss outcomes in bariatric surgery: does cognitive function play a role? Obes Surg. 2013;23(10):1703–10. https://doi.org/10.1007/s11695-013-1060-6.CrossRefPubMedGoogle Scholar
  46. 46.
    Liang J, Matheson BE, Kaye WH, et al. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes (Lond). 2014;38(4):494–506. https://doi.org/10.1038/ijo.2013.142.
  47. 47.
    Gunstad J, Strain G, Devlin MJ, et al. Improved memory function 12 weeks after bariatric surgery. Surg Obes Relat Dis. 2011;7(4):465–72. https://doi.org/10.1016/j.soard.2010.09.015.CrossRefPubMedGoogle Scholar
  48. 48.
    Alosco ML, Galioto R, Spitznagel MB, et al. Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. Am J Surg. 2014;207(6):870–6. https://doi.org/10.1016/j.amjsurg.2013.05.018.CrossRefGoogle Scholar
  49. 49.
    Handley JD, Williams DM, Caplin S, et al. Changes in cognitive function following bariatric surgery: a systematic review. Obes Surg. 2016;26(10):2530–7. https://doi.org/10.1007/s11695-016-2312-z.CrossRefPubMedGoogle Scholar
  50. 50.
    Santry HP, Lauderdale DS, Cagney KA, et al. Predictors of patient selection in bariatric surgery. Ann Surg. 2007;245(1):59–67. https://doi.org/10.1097/01.sla.0000232551.55712.b3.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kittel R, Brauhardt A, Hilbert A. Cognitive and emotional functioning in binge-eating disorder: a systematic review. Int J Eat Disord. 2015;48(6):535–54. https://doi.org/10.1002/eat.22419.CrossRefPubMedGoogle Scholar
  52. 52.
    Allison KC, Wadden TA, Sarwer DB, et al. Night eating syndrome and binge eating disorder among persons seeking bariatric surgery: prevalence and related features. Obesity. 2006;14(S3):77S–82S. https://doi.org/10.1038/oby.2006.286.CrossRefPubMedGoogle Scholar
  53. 53.
    Auger RR. Sleep-related eating disorders. Psychiatry (Edgmont). 2006;3(11):64–70.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Psychological Sciences, Faculty of Medicine, Nursing & Health SciencesMonash UniversityClaytonAustralia
  2. 2.Centre for Obesity Research and Education, Faculty of Medicine, Nursing & Health SciencesMonash UniversityClaytonAustralia
  3. 3.Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia
  4. 4.School of Psychology, Faculty of Health SciencesAustralian Catholic UniversityMelbourneAustralia

Personalised recommendations