Obesity Surgery

, Volume 28, Issue 2, pp 369–377 | Cite as

Comparison of Oral Iron Supplement Formulations for Normalization of Iron Status Following Roux-EN-y Gastric Bypass Surgery: a Randomized Trial

  • Renee A. Mischler
  • Seth M. Armah
  • Bruce A. Craig
  • Arthur D. Rosen
  • Ambar Banerjee
  • Don J. Selzer
  • Jennifer N. Choi
  • Nana Gletsu-Miller
Original Contributions



The evidence behind recommendations for treatment of iron deficiency (ID) following roux-en-y gastric bypass surgery (RYGB) lacks high quality studies.


Academic, United States


The objective of the study is to compare the effectiveness of oral iron supplementation using non-heme versus heme iron for treatment of iron deficiency in RYGB patients.


In a randomized, single-blind study, women post-RYGB and iron deficient received non-heme iron (FeSO4, 195 mg/day) or heme iron (heme-iron-polypeptide, HIP, 31.5 to 94.5 mg/day) for 8 weeks. Measures of iron status, including blood concentrations of ferritin, soluble transferrin receptor (sTfR), and hemoglobin, were assessed.


At baseline, the mean ± standard deviation for age, BMI, and years since surgery of the sample was 41.5 ± 6.8 years, 34.4 ± 5.9 kg/m2, and 6.9 ± 3.1 years, respectively; and there were no differences between FeSO4 (N = 6) or HIP (N = 8) groups. Compliance was greater than 94%. The study was stopped early due to statistical and clinical differences between groups. Values before and after FeSO4 supplementation, expressed as least square means (95% CI) were hemoglobin, 10.8 (9.8, 11.9) to 13.0 (11.9, 14.0) g/dL; sTfR, 2111 (1556, 2864) to 1270 (934, 1737) μg/L; ferritin, 4.9 (3.4, 7.2) to 15.5 (10.6, 22.6) μg/L; and sTfR:ferritin ratio, 542 (273, 1086) to 103 (51, 204); all p < 0.0001. With HIP supplementation, no change was observed in any of the iron status biomarkers (all p > 0.05).


In accordance with recommendations, oral supplementation using FeSO4, but not HIP, was efficacious for treatment of iron deficiency after RYGB.


Iron deficiency Iron supplementation Nutritional complications Bariatric surgery 



Roux-en-y gastric bypass


Body mass index


C-reactive protein


Soluble transferrin receptor


Total iron binding capacity


Heme iron polypeptide



We are grateful to the participants of the study.

Author Contributions

NGM and RAM designed research; AB, DJS, and JNC assisted with participant recruitment and translation of study findings; RAM and SMA conducted research; SMA and BAC analyzed data; RAM and SMA wrote the paper; ADR and JNC served as the study physicians; NGM had primary responsibility for final content. All authors have read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


Colorado Biolabs Inc., Frederick, CO provided the heme supplements.


  1. 1.
    Gletsu-Miller N, Wright BN. Mineral malnutrition following bariatric surgery. Adv Nutr. 2013;4(5):506–17. doi: 10.3945/an.113.004341.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    American-Society-for-Metabolic-and-Bariatric-Surgery. Internet: Accessed 20 May 2013.
  3. 3.
    Mercachita T, Santos Z, Limao J, et al. Anthropometric evaluation and micronutrients intake in patients submitted to laparoscopic roux-en-Y gastric bypass with a postoperative period of >/= 1 year. Obes Surg. 2014;24(1):102–8. doi: 10.1007/s11695-013-1057-1.CrossRefPubMedGoogle Scholar
  4. 4.
    Moize V, Andreu A, Flores L, et al. Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a mediterranean population. J Acad Nutr Diet. 2013;113(3):400–10. doi: 10.1016/j.jand.2012.11.013.CrossRefPubMedGoogle Scholar
  5. 5.
    Wright BN, Gletsu-Miller N. Iron nutrition following bariatric surgery. Bariatric Surg Pract Patient Care. 2015;10(1):3–11. doi: 10.1089/bari.2014.0038.CrossRefGoogle Scholar
  6. 6.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36. doi: 10.1007/s11695-012-0864-0.CrossRefPubMedGoogle Scholar
  7. 7.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.CrossRefPubMedGoogle Scholar
  8. 8.
    Sjostrom L. Review of the key results from the Swedish obese subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34. doi: 10.1111/joim.12012.CrossRefPubMedGoogle Scholar
  9. 9.
    Aarts EO, van Wageningen B, Janssen IM, et al. Prevalence of anemia and related deficiencies in the first year following laparoscopic gastric bypass for morbid obesity. J Obes. 2012;2012:193705. doi: 10.1155/2012/193705.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ruz M, Carrasco F, Rojas P, et al. Iron absorption and iron status are reduced after Roux-en-Y gastric bypass. Am J Nutr. 2009;90:527–32.CrossRefGoogle Scholar
  11. 11.
    Gudzune KA, Huizinga MM, Chang HY, et al. Screening and diagnosis of micronutrient deficiencies before and after bariatric surgery. Obes Surg. 2013; doi: 10.1007/s11695-013-0919-x.
  12. 12.
    van der Beek ES, Monpellier VM, Eland I, et al. Nutritional deficiencies in gastric bypass patients; incidence, time of occurrence and implications for post-operative surveillance. Obes Surg. 2014; doi: 10.1007/s11695-014-1456-y.
  13. 13.
    King WC, Chen JY, Belle SH, et al. Change in pain and physical function following bariatric surgery for severe obesity. JAMA. 2016;315(13):1362–71. doi: 10.1001/jama.2016.3010.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Karefylakis C, Naslund I, Edholm D, et al. Prevalence of anemia and related deficiencies 10 years after gastric bypass-a retrospective study. Obes Surg. 2014; doi: 10.1007/s11695-014-1500-y.
  15. 15.
    Ruiz-Tovar J, Oller I, Llavero C, et al. Hair loss in females after sleeve gastrectomy: predictive value of serum zinc and iron levels. Am Surg. 2014;80(5):466–71.PubMedGoogle Scholar
  16. 16.
    Kushner RF, Gleason B, Shanta-Retelny V. Reemergence of pica following gastric bypass surgery for obesity: a new presentation of an old problem. J Am Diet Assoc. 2004;104(9):1393–7. doi: 10.1016/j.jada.2004.06.026.CrossRefPubMedGoogle Scholar
  17. 17.
    Malone M, Alger-Mayer S, Lindstrom J, et al. Management of iron deficiency and anemia after Roux-en-Y gastric bypass surgery: an observational study. Surg Obes Relat Dis. 2013;9(6):969–74. doi: 10.1016/j.soard.2013.01.019.CrossRefPubMedGoogle Scholar
  18. 18.
    Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient-2013 update: cosponsored by american association of clinical endocrinologists, the obesity society, and american society for metabolic & bariatric surgery*. Obesity (Silver Spring). 2013;21(Suppl 1):S1–S27. doi: 10.1002/oby.20461.CrossRefGoogle Scholar
  19. 19.
    Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Obesity (Silver Spring). 2009;17(Suppl 1):S1–70. doi: 10.1038/oby.2009.28.Google Scholar
  20. 20.
    Brolin RE, Gorman JH, Gorman RC, et al. Prophylactic iron supplementation after Roux-en-Y gastric bypass: a prospective, double-blind, randomized study. Arch Surg. 1998;133(7):740–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Rhode BM, Shustik C, Christou NV, et al. Iron absorption and therapy after gastric bypass. Obes Surg. 1999;9(1):17–21. doi: 10.1381/096089299765553656.CrossRefPubMedGoogle Scholar
  22. 22.
    Varma S, Baz W, Badine E, et al. Need for parenteral iron therapy after bariatric surgery. Surg Obes Relat Dis. 2008;4(6):715–9. doi: 10.1016/j.soard.2008.04.015.CrossRefPubMedGoogle Scholar
  23. 23.
    Gehrer S, Kern B, Peters T, et al. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB)—a prospective study. Obes Surg. 2010;20(4):447–53. doi: 10.1007/s11695-009-0068-4.CrossRefPubMedGoogle Scholar
  24. 24.
    Vargas-Ruiz AG, Hernandez-Rivera G, Herrera MF. Prevalence of iron, folate, and vitamin B12 deficiency anemia after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2008;18:288–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Ruz M, Carrasco F, Rojas P, et al. Heme- and nonheme-iron absorption and iron status 12 mo after sleeve gastrectomy and roux-en-y gastric bypass in morbidly obese women. Am J Clin Nutr. 2012;96:810–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Gesquiere I, Lannoo M, Augustijns P, et al. Iron deficiency after Roux-en-Y gastric bypass: insufficient iron absorption from oral iron supplements. Obes Surg. 2014;24(1):56–61. doi: 10.1007/s11695-013-1042-8.CrossRefPubMedGoogle Scholar
  27. 27.
    Edholm D, Svensson F, Naslund I, et al. Long-term results 11 years after primary gastric bypass in 384 patients. Surg Obes Relat Dis. 2013;9(5):708–13. doi: 10.1016/j.soard.2012.02.011.CrossRefPubMedGoogle Scholar
  28. 28.
    Dalcanale L, Oliveira CP, Faintuch J, et al. Long-term nutritional outcome after gastric bypass. Obes Surg. 2010;20(2):181–7. doi: 10.1007/s11695-009-9916-5.CrossRefPubMedGoogle Scholar
  29. 29.
    Sahebzamani FM, Berarducci A, Murr MM. Malabsorption anemia and iron supplement induced constipation in post-Roux-en-Y gastric bypass (RYGB) patients. J Am Assoc Nurse Pract. 2013;25(12):634–40. doi: 10.1002/2327-6924.12079.PubMedGoogle Scholar
  30. 30.
    Mischler RA, Armah SM, Wright BN, et al. Influence of diet and supplements on iron status after gastric bypass surgery. Surg Obes Relat Dis. 2016;12(3):651–8. doi: 10.1016/j.soard.2015.09.007.CrossRefPubMedGoogle Scholar
  31. 31.
    Seligman PA, Moore GM, Schleicher RB. Clinical studies of HIP: an oral heme-iron product. Nutr Res. 2000;20:1279–86.CrossRefGoogle Scholar
  32. 32.
    Dull RB, Davis E. Heme iron polypeptide for the management of anaemia of chronic kidney disease. J Clin Pharm Ther. 2015;40(4):386–90. doi: 10.1111/jcpt.12281.CrossRefPubMedGoogle Scholar
  33. 33.
    Clark SF. Iron deficiency anemia: diagnosis and management. Curr Opin Gasteroenterol. 2009;25:122–8.CrossRefGoogle Scholar
  34. 34.
    Iron W-RM. Edtion ed. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, editors. Modern nutrition in health and disease. Baltimore: Lippincott Williams & Wilkins; 2014. p. 176–88.Google Scholar
  35. 35.
    Serfass RE, Reddy MB. Breast milk fractions solubilize Fe(III) and enhance iron flux across Caco-2 cells. J Nutr. 2003;133(2):449–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Anonymous. Internet: Accessed 12 Sept 2016.
  37. 37.
    Janssen CA, Scholten PC, Heintz AP. A simple visual assessment technique to discriminate between menorrhagia and normal menstrual blood loss. Obstet Gynecol. 1995;85(6):977–82. doi: 10.1016/0029-7844(95)00062-v.CrossRefPubMedGoogle Scholar
  38. 38.
    R-Core-Team. Internet: Accessed 26 May 2015.
  39. 39.
    Tolkien Z, Stecher L, Mander AP, et al. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383. doi: 10.1371/journal.pone.0117383.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Nutrition SciencePurdue UniversityWest LafayetteUSA
  2. 2.Department of NutritionUniversity of North Carolina at GreensboroGreensboroUSA
  3. 3.Department of StatisticsPurdue UniversityWest LafayetteUSA
  4. 4.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  5. 5.School of MedicineIndiana UniversityIndianapolisUSA

Personalised recommendations