Advertisement

Obesity Surgery

, Volume 28, Issue 1, pp 176–186 | Cite as

Changes in Global Transcriptional Profiling of Women Following Obesity Surgery Bypass

  • Marcela Augusta de Souza Pinhel
  • Natalia Yumi Noronha
  • Carolina Ferreira Nicoletti
  • Bruno Affonso Parente de Oliveira
  • Cristiana Cortes-Oliveira
  • Vitor Caressato Pinhanelli
  • Wilson Salgado Junior
  • Ana Julia Machry
  • Wilson Araújo da Silva Junior
  • Dorotéia Rossi Silva Souza
  • Júlio Sérgio Marchini
  • Carla Barbosa Nonino
Original Contributions

Abstract

Background

Differential gene expression in peripheral blood mononuclear cells (PBMCs) after Roux-en-Y gastric bypass (RYGB) is poorly characterized. Markers of these processes may provide a deeper understanding of the mechanisms that underlie these events. The main goal of this study was to identify changes in PBMC gene expression in women with obesity before and 6 months after RYGB-induced weight loss.

Methods

The ribonucleic acid (RNA) of PBMCs from 13 obese women was analyzed before and 6 months after RYGB; the RNA of PBMCs from nine healthy women served as control. The gene expression levels were determined by microarray analysis. Significant differences in gene expression were validated by real-time quantitative polymerase chain reaction (RT-qPCR).

Results

Microarray analysis for comparison of the pre- and postoperative periods showed that 1366 genes were differentially expressed genes (DEGs). The main pathways were related to gene transcription; lipid, energy, and glycide metabolism; inflammatory and immunological response; cell differentiation; oxidative stress regulation; response to endogenous and exogenous stimuli; substrate oxidation; mTOR signaling pathway; interferon signaling; mitogen-activated protein kinases (MAPK), cAMP response element binding protein (CREB1), heat shock factor 1 (HSF1), and sterol regulatory element binding protein 1c (SREBP-1c) gene expression; adipocyte differentiation; and methylation.

Conclusions

Six months after bariatric surgery and significant weight loss, many molecular pathways involved in obesity and metabolic diseases change. These findings are an important tool to identify potential targets for therapeutic intervention and clinical practice of nutritional genomics in obesity.

Keywords

Obesity Bariatric surgery Gene expression Microarray Whole transcriptome 

Notes

Acknowledgments

We acknowledge São Paulo Research Foundation (FAPESP) (Grant No. 2013/12819-4) and National Council for Scientific and Technological Development (CNPq) (Grant No. 480763/2013-5) for grant support, and Jean Lozach for the support and help in using the BaseSpace Correlation Engine.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32(9):1431–7.CrossRefGoogle Scholar
  4. 4.
    De Lorenzo A, Soldati L, Sarlo F, et al. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 2016;22(2):681–703.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kral JG, Kava RA, Catalano PM, et al. Severe obesity: the neglected epidemic. Obes Facts. 2012;5(2):254–69.CrossRefPubMedGoogle Scholar
  6. 6.
    Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Mitka M. Bariatric surgery continues to show benefits for patients with diabetes. JAMA. 2012;307(18):1901–2.CrossRefPubMedGoogle Scholar
  8. 8.
    González-Plaza JJ, Gutiérrez-Repiso C, García-Serrano S, et al. Effect of Roux-en-Y gastric bypass-induced weight loss on the transcriptomic profiling of subcutaneous adipose tissue. Surg Obes Relat Dis. 2016;12(2):257–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Afman LA, Muller M. Human nutrigenomics of gene regulation by dietary fatty acids. Prog Lipid Res. 2012;51(1):63–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Fuchs D, Piller R, Linseisen J, et al. The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics. 2007;7(18):3278–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Whitney AR, Diehn M, Popper SJ, et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A. 2003;100(4):1896–901.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Radich JP, Mao M, Stepaniants S, et al. Individual-specific variation of gene expression in peripheral blood leukocytes. Genomics. 2004;83(6):980–8.CrossRefPubMedGoogle Scholar
  13. 13.
    de Mello VD, Kolehmanien M, Schwab U, et al. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res. 2012;56(7):1160–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Moody DE. Genomics techniques: an overview of methods for the study of gene expression. J Anim Sci. 2001;79:E128–35.CrossRefGoogle Scholar
  15. 15.
    Berisha SZ, Serre D, Schauer P, et al. Changes in whole blood gene expression in obese subjects with type 2 diabetes following bariatric surgery: a pilot study. PLoS One. 2011;6(3):e16729.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pena SD, Di Pietro G, Fuchshuber-Moraes M, et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One. 2011;6(2):e17063.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mahawar KK, Kumar P, Parmar C, et al. Small bowel limb lengths and Roux-en-Y gastric bypass: a systematic review. Obes Surg. 2016;26(3):660–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990;9(7):811–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Searle S, Speed T, Milliken GA. Population marginal means in the linear model: an alternative to least squares means. Am Stat. 1980;34:216–21.Google Scholar
  21. 21.
    Kupershmidt I, Su QJ, Grewal A, et al. Ontology-based meta-analysis of global collections of high-throughput public data. PLoS One. 2010;29:5(9).Google Scholar
  22. 22.
    Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22. doi: 10.1373/clinchem.2008.112797.CrossRefPubMedGoogle Scholar
  23. 23.
    Hindle AK, Edwards C, McCaffrey T, et al. Reactivation of adiponectin expression in obese patients after bariatric surgery. Surg Endosc. 2010;24(6):1367–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Hindle AK, Koury J, McCaffrey T, et al. Dysregulation of gene expression within the peroxisome proliferator activated receptor pathway in morbidly obese patients. Surg Endosc. 2009;23(6):1292–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Mardinoglu A, Heiker JT, Gärtner D, et al. Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue. Sci Rep. 2015;5:14841.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Clément K, Viguerie N, Poitou C, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18(14):1657–69.CrossRefPubMedGoogle Scholar
  27. 27.
    Dankel SN, Fadnes DJ, Stavrum AK, et al. Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One. 2010;5(6):e11033.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gerhard GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes. 2014;38(3):371–8.CrossRefGoogle Scholar
  29. 29.
    Han J, Li E, Chen L, et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature. 2015;524(7564):243–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Ma X, Xu L, Alberobello AT, et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab. 2015;22(4):695–708.CrossRefPubMedGoogle Scholar
  31. 31.
    Gijón MA, Spencer DM, Siddiqi AR, et al. Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that do and do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J Biol Chem. 2000;275(26):20146–56.CrossRefPubMedGoogle Scholar
  32. 32.
    Gubern A, Barceló-Torns M, Barneda D, et al. JNK and ceramide kinase govern the biogenesis of lipid droplets through activation of group IVA phospholipase A2. J Biol Chem. 2009;284(47):32359–69.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Khatchadourian A, Bourque SD, Richard VR, et al. Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta. 2012;1821(4):607–17.CrossRefPubMedGoogle Scholar
  34. 34.
    Leslie CC. Cytosolic phospholipase A2: physiological function and role in disease. J Lipid Res. 2015;56(8):1386–402.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sokolowska M, Chen LY, Eberlein M, et al. Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages. J Biol Chem. 2014;289(7):4470–88.CrossRefPubMedGoogle Scholar
  36. 36.
    Cancello R, Zulian A, Gentilini D, et al. Permanence of molecular features of obesity in subcutaneous adipose tissue of ex-obese subjects. Int J Obes. 2013;37(6):867–73.CrossRefGoogle Scholar
  37. 37.
    Nicoletti CF, de Oliveira BA, de Pinhel MA, et al. Influence of excess weight loss and weight regain on biochemical indicators during a 4-year follow-up after Roux-en-Y gastric bypass. Obes Surg. 2015;25(2):279–84.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marcela Augusta de Souza Pinhel
    • 1
  • Natalia Yumi Noronha
    • 1
  • Carolina Ferreira Nicoletti
    • 1
  • Bruno Affonso Parente de Oliveira
    • 1
  • Cristiana Cortes-Oliveira
    • 1
  • Vitor Caressato Pinhanelli
    • 1
  • Wilson Salgado Junior
    • 2
  • Ana Julia Machry
    • 3
  • Wilson Araújo da Silva Junior
    • 3
  • Dorotéia Rossi Silva Souza
    • 4
  • Júlio Sérgio Marchini
    • 1
  • Carla Barbosa Nonino
    • 1
  1. 1.Department of Internal Medicine, Laboratory of Nutrigenomic Studies, Ribeirao Preto Medical School, FMRPUniversity of Sao Paulo, USPRibeirao PretoBrazil
  2. 2.Department of Surgery and Anatomy, Ribeirao Preto Medical School, FMRPUniversity of Sao Paulo, USPRibeirao PretoBrazil
  3. 3.Department of Genetics, Ribeirao Preto Medical School, FMRPUniversity of Sao Paulo, USPRibeirao PretoBrazil
  4. 4.Department of Molecular BiologySão Jose do Rio Preto Medical SchoolSão Jose do Rio PretoBrazil

Personalised recommendations