Advertisement

Obesity Surgery

, Volume 26, Issue 7, pp 1537–1548 | Cite as

Sleeve Gastrectomy Reduces Body Weight and Improves Metabolic Profile also in Obesity-Prone Rats

  • Rafael Moncada
  • Sara Becerril
  • Amaia Rodríguez
  • Leire Méndez-Giménez
  • Beatriz Ramírez
  • Victoria Catalán
  • Javier Gómez-Ambrosi
  • M. Jesús Gil
  • Secundino Fernández
  • Javier A. Cienfuegos
  • Víctor Valentí
  • Gema FrühbeckEmail author
Original Contributions

Abstract

Background

Susceptibility to obesity is associated with a notable inter-individual variation. The aim of the present study was to compare the effectiveness of sleeve gastrectomy (SG) on weight loss and metabolic profile in obesity-prone (OP) rats vs animals that are non-susceptible to obesity (NSO).

Methods

Young male Wistar rats (n = 101) were put in a diet-induced obesity (DIO) programme with ad libitum access to a high-fed diet (HFD) during 12 months. Body weight and food intake were regularly registered. Thereafter, rats were ranked by final body weight to identify the obesity-prone (OP) (n = 13) and non-susceptible to obesity (NSO) (n = 14) animals. OP and NSO rats were submitted to surgical interventions (sham operation, SG and pair-fed to the amount of food eaten by sleeve-gastrectomized rats). Body weight, food intake, energy expenditure, body temperature, fat pads weight, and metabolic profiling were analysed 4 weeks after surgical or dietary interventions.

Results

SG in both OP and NSO rats decreased body weight as compared to sham and pair-fed groups (P < 0.05), mainly due to reductions in subcutaneous and perirenal fat mass (P < 0.001). Total weight loss achieved in sleeve-gastrectomized OP and NSO rats was higher than that of pair-fed ones (P < 0.05), showing that the SG effect goes beyond caloric restriction. In this regard, sleeve-gastrectomized rats exhibited significantly (P < 0.05) increased basal rectal temperature together with upregulated brown adipose tissue Ucp-1 protein expression levels. A significant (P < 0.05) improvement in insulin sensitivity was also observed in both OP and NSO animals that underwent SG as compared with pair-fed counterparts.

Conclusion

Our findings provide the first evidence that obesity-prone rats also benefit from surgery responding effectively to SG, as evidenced by the significant body weight reduction and the metabolic profile improvement.

Keywords

Susceptibility Obesity phenotypes Obesity-prone Diet-induced obesity Sleeve gastrectomy 

Abbreviations

BAT

Brown adipose tissue

BW

Body weight

DIO

Diet-induced obesity

EE

Energy expenditure

EWAT

Epididymal white adipose tissue

FFA

Free fatty acids

HFD

High-fat diet

HOMA

Homeostasis model assessment

ND

Normal diet

OP

Obesity-prone

OR

Obesity-resistant

PRWAT

Perirenal white adipose tissue

QUICKI

Quantitative insulin sensitivity check index

RER

Respiratory exchange ratio

RT

Room temperature

SCWAT

Subcutaneous white adipose tissue

TG

Triacylglycerol

TWL

Total weight loss

Notes

Acknowledgments

We gratefully acknowledge the valuable collaboration of all the staff of the breeding house of the University of Navarra.

Compliance with Ethical Standards

Conflict of Interest

R.M., S.B., A.R., L.M.-G., B.R., V.C., J.G.-A., M.J.G., S.F., J.A.-C., V.V. and G.F. declare that they have no conflict of interest.

This article does not contain any studies with human participants.

Funding

This work was supported by grants from the Instituto de Salud Carlos III, Fondo de Investigación Sanitaria (FIS PI12/00515), from the Department of Health (48/2011 and 58/2011) of the Gobierno de Navarra and from the CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.

References

  1. 1.
    Frühbeck G. Obesity. Screening for the evident in obesity. Nat Rev Endocrinol. 2012;8:570–2.CrossRefPubMedGoogle Scholar
  2. 2.
    Frühbeck G, Toplak H, Woodward E. Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6(2):117–20.CrossRefPubMedGoogle Scholar
  3. 3.
    West DB, Boozer CN, Moody DL, et al. Dietary obesity in nine inbred mouse strains. Am J Physiol. 1992;262(6 Pt 2):R1025–32.PubMedGoogle Scholar
  4. 4.
    Speakman J, Hambly C, Mitchell S, et al. Animal models of obesity. Obes Rev. 2007;8 Suppl 1:55–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Schemmel R, Mickelsen O, Gill JL. Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J Nutr. 1970;100(9):1041–8.PubMedGoogle Scholar
  6. 6.
    Levin BE, Sullivan AC. Glucose-induced norepinephrine levels and obesity resistance. Am J Physiol. 1987;253(3 Pt 2):R475–81.PubMedGoogle Scholar
  7. 7.
    Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 1997;273(2 Pt 2):R725–30.PubMedGoogle Scholar
  8. 8.
    Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46(2):143–72.PubMedGoogle Scholar
  9. 9.
    Levin BE. Developmental gene x environment interactions affecting systems regulating energy homeostasis and obesity. Front Neuroendocrinol. 2010;31(3):270–83.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lauterio TJ, Bond JP, Ulman EA. Development and characterization of a purified diet to identify obesity-susceptible and resistant rat populations. J Nutr. 1994;124(11):2172–8.PubMedGoogle Scholar
  11. 11.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.CrossRefPubMedGoogle Scholar
  12. 12.
    Sjöström L. Review of the key results from the swedish obese subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.CrossRefPubMedGoogle Scholar
  13. 13.
    Frühbeck G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol. 2015;11(8):465–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Facts. 2013;6(5):449–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24(1):42–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Gluck B, Movitz B, Jansma S, et al. Laparoscopic sleeve gastrectomy is a safe and effective bariatric procedure for the lower BMI (35.0-43.0 kg/m2) population. Obes Surg. 2011;21(8):1168–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Gagner M, Deitel M, Erickson AL, et al. Survey on laparoscopic sleeve gastrectomy (LSG) at the fourth international consensus summit on sleeve gastrectomy. Obes Surg. 2013;23(12):2013–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Rosenthal RJ, Diaz AA, Arvidsson D, et al. International sleeve gastrectomy expert panel consensus statement: best practice guidelines based on experience of >12,000 cases. Surg Obes Relat Dis. 2012;8(1):8–19.CrossRefPubMedGoogle Scholar
  20. 20.
    Eid GM, Brethauer S, Mattar SG, et al. Laparoscopic sleeve gastrectomy for super obese patients: forty-eight percent excess weight loss after 6 to 8 years with 93% follow-up. Ann Surg. 2012;256(2):262–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Pereferrer FS, Gonzalez MH, Rovira AF, et al. Influence of sleeve gastrectomy on several experimental models of obesity: metabolic and hormonal implications. Obes Surg. 2008;18(1):97–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Valentí V, Martín M, Ramírez B, et al. Sleeve gastrectomy induces weight loss in diet-induced obese rats even if high-fat feeding is continued. Obes Surg. 2011;21(9):1438–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Méndez-Giménez L, Becerril S, Moncada R, et al. Sleeve gastrectomy reduces hepatic steatosis by improving the coordinated regulation of aquaglyceroporins in adipose tissue and liver in obese rats. Obes Surg. 2015;25(9):1723–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Rodríguez A, Becerril S, Valentí V, et al. Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats. Obes Surg. 2012;22(9):1481–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Rodríguez A, Becerril S, Valentí V, et al. Sleeve gastrectomy reduces blood pressure in obese (fa/fa) Zucker rats. Obes Surg. 2012;22(2):309–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Martín M, Burrell MA, Gómez-Ambrosi J, et al. Short- and long-term changes in gastric morphology and histopathology following sleeve gastrectomy in diet-induced obese rats. Obes Surg. 2012;22(4):634–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Frühbeck G, Alonso R, Marzo F, et al. A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal Biochem. 1995;225:206–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Becerril S, Rodríguez A, Catalán V, et al. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function. PLoS ONE. 2010;5(6):e10962.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lancha A, Moncada R, Valentí V, et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg. 2014;24(10):1702--8.Google Scholar
  30. 30.
    Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, et al. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol. 2002;128(2):149–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Rodríguez A, Catalán V, Becerril S, et al. Impaired adiponectin-AMPK signalling in insulin-sensitive tissues of hypertensive rats. Life Sci. 2008;83(15-16):540–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56 e5.CrossRefPubMedGoogle Scholar
  33. 33.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.CrossRefPubMedGoogle Scholar
  34. 34.
    Nguyen NT, Nguyen B, Gebhart A, et al. Changes in the makeup of bariatric surgery: a national increase in use of laparoscopic sleeve gastrectomy. J Am Coll Surg. 2013;216(2):252–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Frühbeck G, Diez Caballero A, Gil MJ. Fundus functionality and ghrelin concentrations after bariatric surgery. N Engl J Med. 2004;350:308–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Bohdjalian A, Langer FB, Shakeri-Leidenmuhler S, et al. Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes Surg. 2010;20(5):535–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Frühbeck G, Gómez Ambrosi J, Salvador J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001;15(2):333–40.CrossRefPubMedGoogle Scholar
  38. 38.
    Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes. 2009;33(5):541–52.CrossRefGoogle Scholar
  39. 39.
    Rodriguez A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts. 2014;7(2):82–95.CrossRefPubMedGoogle Scholar
  40. 40.
    Frühbeck G, Gómez AJ. Rationale for the existence of additional adipostatic hormones. FASEB J. 2001;15(11):1996–2006.CrossRefPubMedGoogle Scholar
  41. 41.
    Bueter M, Löwenstein C, Olbers T, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2010;138(5):1845–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Becerril S, Gómez-Ambrosi J, Martin M, et al. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol. 2013;28(11):1411–25.PubMedGoogle Scholar
  43. 43.
    Saeidi N, Nestoridi E, Kucharczyk J, et al. Sleeve gastrectomy and roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes (Lond). 2012;36(11):1396–402.CrossRefGoogle Scholar
  44. 44.
    Baraboi ED, Li W, Labbe SM, et al. Metabolic changes induced by the biliopancreatic diversion in diet-induced obesity in male rats: the contributions of sleeve gastrectomy and duodenal switch. Endocrinology. 2015;156(4):1316–29.CrossRefPubMedGoogle Scholar
  45. 45.
    Das SK, Roberts SB, McCrory MA, et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am J Clin Nutr. 2003;78(1):22–30.PubMedGoogle Scholar
  46. 46.
    Werling M, Olbers T, Fandriks L, et al. Increased postprandial energy expenditure may explain superior long term weight loss after Roux-en-Y gastric bypass compared to vertical banded gastroplasty. PLoS ONE. 2013;8(4):e60280.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kadera BE, Portenier DD, Yurcisin BM, et al. Evidence for a metabolic mechanism in the improvement of type 2 diabetes after sleeve gastrectomy in a rodent model. Surg Obes Relat Dis. 2013;9(3):447–52.CrossRefPubMedGoogle Scholar
  49. 49.
    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes--3-year outcomes. N Engl J Med. 2014;370(21):2002–13.CrossRefPubMedGoogle Scholar
  51. 51.
    Lancha A, Moncada R, Valentí V, et al. Comparative effects of gastric bypass and sleeve gastrectomy on plasma osteopontin concentrations in humans. Surg Endosc. 2014;28(8):2412–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Hall KD. Modeling metabolic adaptations and energy regulation in humans. Annu Rev Nutr. 2012;32:35–54.CrossRefPubMedGoogle Scholar
  53. 53.
    Warden CH, Fisler JS. Comparisons of diets used in animal models of high-fat feeding. Cell Metab. 2008;7(4):277.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Stanhope KL, Schwarz JM, Havel PJ. Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Curr Opin Lipidol. 2013;24(3):198–206.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rafael Moncada
    • 1
    • 2
    • 4
  • Sara Becerril
    • 1
    • 2
  • Amaia Rodríguez
    • 1
    • 2
    • 3
  • Leire Méndez-Giménez
    • 1
    • 2
    • 3
  • Beatriz Ramírez
    • 1
    • 2
    • 3
  • Victoria Catalán
    • 1
    • 2
    • 3
  • Javier Gómez-Ambrosi
    • 1
    • 2
    • 3
  • M. Jesús Gil
    • 1
    • 2
    • 5
  • Secundino Fernández
    • 1
    • 2
    • 6
  • Javier A. Cienfuegos
    • 1
    • 2
    • 7
  • Víctor Valentí
    • 1
    • 2
    • 7
  • Gema Frühbeck
    • 1
    • 2
    • 3
    • 8
    Email author
  1. 1.CIBEROBNInstituto de Salud Carlos IIIMadridSpain
  2. 2.Obesity & Adipobiology GroupInstituto de Investigación Sanitario de Navarra (IdiSNA)PamplonaSpain
  3. 3.Metabolic Research LaboratoryClínica Universidad de NavarraPamplonaSpain
  4. 4.Department of AnesthesiaClínica Universidad de NavarraPamplonaSpain
  5. 5.Department of BiochemistryClínica Universidad de NavarraPamplonaSpain
  6. 6.Department of OtorhinolaryngologyClínica Universidad de NavarraPamplonaSpain
  7. 7.Department of SurgeryClínica Universidad de NavarraPamplonaSpain
  8. 8.Department of Endocrinology & NutritionClínica Universidad de NavarraPamplonaSpain

Personalised recommendations