Obesity Surgery

, Volume 26, Issue 3, pp 603–611 | Cite as

DNA Methylation and Hydroxymethylation Levels in Relation to Two Weight Loss Strategies: Energy-Restricted Diet or Bariatric Surgery

  • Carolina Ferreira Nicoletti
  • Carla Barbosa Nonino
  • Bruno Affonso Parenti de Oliveira
  • Marcela Augusta de Souza Pinhel
  • Maria Luisa Mansego
  • Fermin Ignacio Milagro
  • Maria Angeles Zulet
  • José Alfredo Martinez
Original Contributions

Abstract

Background

Weight loss can be influenced by genetic factors and epigenetic mechanisms that participate in the regulation of body weight. This study aimed to investigate whether the weight loss induced by two different obesity treatments (energy restriction or bariatric surgery) may affect global DNA methylation (LINE-1) and hydroxymethylation profile, as well as the methylation patterns in inflammatory genes.

Methods

This study encompassed women from three differents groups: 1. control group (n = 9), normal weight individuals; 2. energy restriction group (n = 22), obese patients following an energy-restricted Mediterranean-based dietary treatment (RESMENA); and 3. bariatric surgery group (n = 14), obese patients underwent a hypocaloric diet followed by bariatric surgery. Anthropometric measurements and 12-h fasting blood samples were collected before the interventions and after 6 months. Lipid and glucose biomarkers, global hydroxymethylation (by ELISA), LINE-1, SERPINE-1, and IL-6 (by MS-HRM) methylation levels were assessed in all participants.

Results

Baseline LINE-1 methylation was associated with serum glucose levels whereas baseline hydroxymethylation was associated with BMI, waist circumference, total cholesterol, and triglycerides. LINE-1 and SERPINE-1 methylation levels did not change after weight loss, whereas IL-6 methylation increased after energy restriction and decreased in the bariatric surgery group. An association between SERPINE-1 methylation and weight loss responses was found.

Conclusions

Global DNA methylation and hydroxymethylation might be biomarkers for obesity and associated comorbidities. Depending on the obesity treatment (diet or surgery), the DNA methylation patterns behave differently. Baseline SERPINE-1 methylation may be a predictor of weight loss values after bariatric surgery.

Keywords

Obesity 5-hmC hydroxymethylation DNA methylation LINE-1, IL-6, SERPINE-1 

References

  1. 1.
    Organization WH. Global status report on noncommunicable diseases. In: Organization WH, editor. Rome, Italy; 2011.Google Scholar
  2. 2.
    Martinez JA, Parra MD, Santos JL, et al. Genotype-dependent response to energy-restricted diets in obese subjects: towards personalized nutrition. Asia Pac J Clin Nutr. 2008;17 Suppl 1:119–22.PubMedGoogle Scholar
  3. 3.
    Ara R, Blake L, Gray L, et al. What is the clinical effectiveness and cost-effectiveness of using drugs in treating obese patients in primary care? A systematic review. Health Technol Assess. 2012;16(5):iii–xiv. 1–195.CrossRefPubMedGoogle Scholar
  4. 4.
    Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Zulet MA, Bondia-Pons I, Abete I, et al. The reduction of the metabolyc syndrome in Navarra-Spain (RESMENA-S) study: a multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control. Nutr Hosp. 2011;26(1):16–26.PubMedGoogle Scholar
  6. 6.
    Lopez-Legarrea P, de la Iglesia R, Abete I, et al. The protein type within a hypocaloric diet affects obesity-related inflammation: the RESMENA project. Nutrition. 2014;30(4):424–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Wadden TA, Butryn ML, Byrne KJ. Efficacy of lifestyle modification for long-term weight control. Obes Res. 2004;12(Suppl):151S–62S.CrossRefPubMedGoogle Scholar
  8. 8.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Neff KJ, le Roux CW. Bariatric surgery: a best practice article. J Clin Pathol. 2013;66(2):90–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Hainer V, Zamrazilova H, Spalova J, et al. Role of hereditary factors in weight loss and its maintenance. Physiol Res. 2008;57 Suppl 1:S1–S15.PubMedGoogle Scholar
  11. 11.
    Still CD, Wood GC, Chu X, et al. High allelic burden of four obesity SNPs is associated with poorer weight loss outcomes following gastric bypass surgery. Obesity (Silver Spring). 2011;19(8):1676–83.CrossRefGoogle Scholar
  12. 12.
    Martinez JA, Milagro FI, Claycombe KJ, et al. Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr. 2014;5(1):71–81.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Choi SW, Claycombe KJ, Martinez JA, et al. Nutritional epigenomics: a portal to disease prevention. Adv Nutr. 2013;4(5):530–2.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Milagro FI, Campion J, Cordero P, et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011;25(4):1378–89.CrossRefPubMedGoogle Scholar
  15. 15.
    Moleres A, Campión J, Milagro FI, et al. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. FASEB J. 2013;27(6):2504–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Bouchard L, Rabasa-Lhoret R, Faraj M, et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr. 2010;91(2):309–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao J, Goldberg J, Vaccarino V. Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes (Lond). 2013;37(1):140–5.CrossRefGoogle Scholar
  18. 18.
    Campion J, Milagro FI, Martinez JA. Individuality and epigenetics in obesity. Obes Rev. 2009;10(4):383–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3(4):1020–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Kirchner H, Nylen C, Laber S, et al. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass. Surg Obes Relat Dis. 2014;10(4):671–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Weisenberger DJ, Campan M, Long TI, et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 2005;33(21):6823–36.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Feinberg AP, Irizarry RA, Fradin D, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med. 2010;2(49):49ra67.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Zhu ZZ, Hou L, Bollati V, et al. Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol. 2012;41(1):126–39.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Perng W, Mora-Plazas M, Marin C, et al. A prospective study of LINE-1DNA methylation and development of adiposity in school-age children. PLoS One. 2013;8(4), e62587.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Zhao J, Goldberg J, Bremner JD, et al. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes. 2012;61(2):542–6.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Martin-Nunez GM, Cabrera-Mulero R, Rubio-Martin E, et al. Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study. Mol Nutr Food Res. 2014;58(7):1528–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Cash HL, McGarvey ST, Houseman EA, et al. Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. Epigenetics. 2011;6(10):1257–64.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Crow MK. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010;43(1):7–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Lopez-Legarrea P, Mansego ML, Zulet MA, et al. SERPINE1, PAI-1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction. J Clin Biochem Nutr. 2013;53(3):139–44.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Pfeifer GP, Kadam S, Jin SG. 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin. 2013;6(1):10.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    de la Iglesia R, Lopez-Legarrea P, Abete I, et al. A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: the MEtabolic Syndrome REduction in NAvarra (RESMENA) project. Br J Nutr. 2014;111(4):643–52.CrossRefPubMedGoogle Scholar
  32. 32.
    Perez-Cornago A, Lopez-Legarrea P, de la Iglesia R, et al. Longitudinal relationship of diet and oxidative stress with depressive symptoms in patients with metabolic syndrome after following a weight loss treatment: the RESMENA project. Clin Nutr. 2014;33(6):1061–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Perez-Cornago A, de la Iglesia R, Lopez-Legarrea P, et al. A decline in inflammation is associated with less depressive symptoms after a dietary intervention in metabolic syndrome patients: a longitudinal study. Nutr J. 2014;13:36.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Bavaresco M, Paganini S, Lima TP, et al. Nutritional course of patients submitted to bariatric surgery. Obes Surg. 2010;20(6):716–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Nicoletti CF, de Oliveira BA, de Pinhel MA, et al. Influence of excess weight loss and weight regain on biochemical indicators during a 4-year follow-up after Roux-en-Y gastric bypass. Obes Surg. 2015;25(2):279–84.CrossRefPubMedGoogle Scholar
  36. 36.
    Biro SM, Olson DL, Garren MJ, et al. Diabetes remission and glycemic response to pre-bariatric surgery diet. J Surg Res. 2013;185(1):1–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299(24):2877–83.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Zhang FF, Santella RM, Wolff M, et al. White blood cell global methylation and IL-6 promoter methylation in association with diet and lifestyle risk factors in a cancer-free population. Epigenetics. 2012;7(6):606–14.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Huang YT, Maccani JZ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM. Epigenetic patterns in successful weight loss maintainers: a pilot study. Int J Obes (Lond). 2014.Google Scholar
  41. 41.
    Pearce MS, McConnell JC, Potter C, et al. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol. 2012;41(1):210–7.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Ulrich CM, Toriola AT, Koepl LM, et al. Metabolic, hormonal and immunological associations with global DNA methylation among postmenopausal women. Epigenetics. 2012;7(9):1020–8.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Shen L, Wu H, Diep D, et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell. 2013;153(3):692–706.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Gao F, Das SK. Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomol Concepts. 2014;5(2):95–107.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Song CX, Szulwach KE, Dai Q, et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell. 2013;153(3):678–91.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Branco MR, Ficz G, Reik W. Uncovering the role of 5‐hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2012;13:7–13.Google Scholar
  47. 47.
    Valinluck V, Tsai HH, Rogstad DK, et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32(14):4100–8.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Guibert S, Weber M. Functions of DNA methylation and hydroxymethylation in mammalian development. Curr Top Dev Biol. 2013;104:47–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Lashley T, Gami P, Valizadeh N, Li A, Revesz T, Balazs R. Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2014.Google Scholar
  51. 51.
    Coppieters N, Dieriks BV, Lill C, et al. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging. 2014;35(6):1334–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Nathan DM, Davidson MB, DeFronzo RA, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Tonet AC, Karnikowski M, Moraes CF, et al. Association between the -174 G/C promoter polymorphism of the interleukin-6 gene and cardiovascular disease risk factors in Brazilian older women. Braz J Med Biol Res. 2008;41(1):47–53.CrossRefPubMedGoogle Scholar
  54. 54.
    Moleres A, Rendo-Urteaga T, Azcona C, et al. Il6 gene promoter polymorphism (-174G/C) influences the association between fat mass and cardiovascular risk factors. J Physiol Biochem. 2009;65(4):405–13.CrossRefPubMedGoogle Scholar
  55. 55.
    Roth CL, Kratz M, Ralston MM, et al. Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism. 2011;60(4):445–52.CrossRefPubMedGoogle Scholar
  56. 56.
    Bocca G, Corpeleijn E, Stolk RP, et al. Effect of obesity intervention programs on adipokines, insulin resistance, lipid profile, and low-grade inflammation in 3- to 5-y-old children. Pediatr Res. 2014;75(2):352–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Campion J, Milagro F, Martinez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci. 2010;94:291–347.CrossRefPubMedGoogle Scholar
  58. 58.
    Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med. 2000;342(24):1792–801.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carolina Ferreira Nicoletti
    • 1
  • Carla Barbosa Nonino
    • 1
  • Bruno Affonso Parenti de Oliveira
    • 1
  • Marcela Augusta de Souza Pinhel
    • 1
  • Maria Luisa Mansego
    • 2
  • Fermin Ignacio Milagro
    • 2
    • 3
    • 4
  • Maria Angeles Zulet
    • 2
    • 3
    • 4
    • 5
  • José Alfredo Martinez
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Internal Medicine, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Department of Nutrition, Food Science and PhysiologyUniversity of NavarraPamplonaSpain
  3. 3.Centre for Nutrition ResearchUniversity of NavarraPamplonaSpain
  4. 4.CIBERobn Fisiología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos IIIMadridSpain
  5. 5.IdiSNA, Navarra Institute for Health ResearchPamplonaSpain

Personalised recommendations