Obesity Surgery

, Volume 24, Issue 10, pp 1686–1692 | Cite as

Effects of Bariatric Surgery on Male Obesity-Associated Secondary Hypogonadism: Comparison of Laparoscopic Gastric Bypass with Restrictive Procedures

  • Berniza Calderón
  • Alba Galdón
  • Alfonso Calañas
  • Roberto Peromingo
  • Julio Galindo
  • Francisca García-Moreno
  • Gloria Rodriguez-Velasco
  • Antonia Martín-Hidalgo
  • Clotilde Vazquez
  • Héctor F. Escobar-Morreale
  • José I. Botella-Carretero
Original Contributions

Abstract

Bariatric surgery results in the complete resolution of male obesity-associated secondary hypogonadism (MOSH) in many patients. However, the effects of different bariatric surgical procedures on male sexual hormone profiles and sexual dysfunction have not been compared to date. We compared the pre- and post-operative (at least 6 months after initial surgery) sex hormone profiles of 20 severely obese men submitted to laparoscopic gastric bypass (LGB) with 15 similar patients submitted to restrictive techniques (sleeve gastrectomy in 10 and adjustable gastric banding in 5). We calculated free testosterone (FT) levels from total testosterone (TT) and sex hormone binding globulin (SHBG) concentrations. Fasting glucose and insulin levels served for homeostatic model assessment of insulin resistance (HOMAIR). MOSH was present in 25 and 16 of the 35 patients when considering TT and FT concentrations respectively, resolving after surgery in all but one of them. When considering all obese men as a whole, patients submitted to LGB or restrictive procedures did not differ in terms of excess weight loss, in the decrease of fasting glucose and insulin, HOMAIR and waist circumference, or in the increase of serum 25-hydroxyvitamin D, TT and FT levels. The improvement in TT correlated with the decrease in fasting glucose (r = −0.390, P = 0.021), insulin (r = −0.425, P = 0.015) and HOMAIR (r = −0.380, P = 0.029), and with the increase in SHBG (r = 0.692, P < 0.001). The increase in FT correlated with the decrease in fasting glucose (r = −0.360, P = 0.034). LGB and restrictive techniques are equally effective in producing a remission of MOSH.

Keywords

Laparoscopic gastric bypass Sleeve gastrectomy Band lap Obesity Surgery Hypogonadism Androgens Insulin resistance 

Notes

Acknowledgments

We thank the nurse staff of the Department of Endocrinology and Nutrition for their help with the anthropometric and blood sampling of the patients.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med 2010;363:2211–9.Google Scholar
  3. 3.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23:427–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Lynch RJ, Eisenberg D, Bell RL. Metabolic consequences of bariatric surgery. J Clin Gastroenterol. 2006;40:659–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Balsa JA, Botella-Carretero JI, Peromingo R, et al. Role of calcium malabsorption in the development of secondary hyperparathyroidism after biliopancreatic diversion. J Endocrinol Invest. 2008;31:845–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Balsa JA, Botella-Carretero JI, Peromingo R, et al. Chronic increase of bone turnover markers after biliopancreatic diversion is related to secondary hyperparathyroidism and weight loss. Relation with bone mineral density. Obes Surg. 2010;20:468–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Balsa JA, Botella-Carretero JI, Gomez-Martin JM, et al. Copper and zinc serum levels after derivative bariatric surgery: differences between Roux-en-Y gastric bypass and biliopancreatic diversion. Obes Surg. 2011;21:744–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient–2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring). 2013;21 Suppl 1:S1–S27.CrossRefGoogle Scholar
  9. 9.
    Yip S, Plank LD, Murphy R. Gastric bypass and sleeve gastrectomy for type 2 diabetes: a systematic review and meta-analysis of outcomes. Obes Surg. 2013;23:1994–2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, et al. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2005;90:6364–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Botella-Carretero JI, Balsa JA, Gomez-Martin JM, et al. Circulating free testosterone in obese men after bariatric surgery increases in parallel with insulin sensitivity. J Endocrinol Invest. 2013;36:227–32.PubMedGoogle Scholar
  12. 12.
    Corona G, Rastrelli G, Monami M, et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol. 2013;168:829–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    NIH conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med 1991;115:956–61.Google Scholar
  16. 16.
    Shah B, Sucher K, Hollenbeck CB. Comparison of ideal body weight equations and published height-weight tables with body mass index tables for healthy adults in the United States. Nutr Clin Pract. 2006;21:312–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Montero PN, Stefanidis D, Norton HJ, et al. Reported excess weight loss after bariatric surgery could vary significantly depending on calculation method: a plea for standardization. Surg Obes Relat Dis. 2011;7:531–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84:3666–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Dandona P, Dhindsa S, Chaudhuri A, et al. Hypogonadotrophic hypogonadism in type 2 diabetes, obesity and the metabolic syndrome. Curr Mol Med. 2008;8:816–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Guay AT. The emerging link between hypogonadism and metabolic syndrome. J Androl. 2009;30:370–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Katabami T, Kato H, Asahina T, et al. Serum free testosterone and metabolic syndrome in Japanese men. Endocr J. 2010;57:533–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Yeap BB, Chubb SA, Hyde Z, et al. Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: the Health In Men Study. Eur J Endocrinol. 2009;161:591–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Vikan T, Schirmer H, Njolstad I, et al. Low testosterone and sex hormone-binding globulin levels and high estradiol levels are independent predictors of type 2 diabetes in men. Eur J Endocrinol. 2010;162:747–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Saboor Aftab SA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol. 2013;78:330–7.CrossRefGoogle Scholar
  25. 25.
    Cohen PG. Obesity in men: the hypogonadal-estrogen receptor relationship and its effect on glucose homeostasis. Med Hypotheses. 2008;70:358–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Fischer-Posovszky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue—an update. Horm Metab Res. 2007;39:314–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Kapoor D, Clarke S, Stanworth R, et al. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2007;156:595–602.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee DM, Tajar A, Pye SR, et al. Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur J Endocrinol. 2012;166:77–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Nimptsch K, Platz EA, Willett WC, et al. Association between plasma 25-OH vitamin D and testosterone levels in men. Clin Endocrinol (Oxf). 2012;77:106–12.CrossRefGoogle Scholar
  30. 30.
    Lerchbaum E, Obermayer-Pietsch B. Vitamin D and fertility: a systematic review. Eur J Endocrinol. 2012;166:765–78.PubMedCrossRefGoogle Scholar
  31. 31.
    Hammoud AO, Meikle AW, Peterson CM, et al. Association of 25-hydroxy-vitamin D levels with semen and hormonal parameters. Asian J Androl. 2012;14:855–9.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Pellitero S, Olaizola I, Alastrue A, et al. Hypogonadotropic hypogonadism in morbidly obese males is reversed after bariatric surgery. Obes Surg. 2012;22:1835–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Burcelin R, Thorens B, Glauser M, et al. Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. Endocrinology. 2003;144:4484–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:2536–59.PubMedCrossRefGoogle Scholar
  35. 35.
    Buvat J, Maggi M, Gooren L, et al. Endocrine aspects of male sexual dysfunctions. J Sex Med. 2010;7:1627–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Bastounis EA, Karayiannakis AJ, Syrigos K, et al. Sex hormone changes in morbidly obese patients after vertical banded gastroplasty. Eur Surg Res. 1998;30:43–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Hammoud A, Gibson M, Hunt SC, et al. Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab. 2009;94:1329–32.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Globerman H, Shen-Orr Z, Karnieli E, et al. Inhibin B in men with severe obesity and after weight reduction following gastroplasty. Endocr Res. 2005;31:17–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Lancha A, Frübeck G, Gómez-Ambrosi J. Peripheral signalling involved in energy homeostasis control. Nutr Res Rev. 2012;25:223–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Berniza Calderón
    • 1
  • Alba Galdón
    • 1
  • Alfonso Calañas
    • 1
  • Roberto Peromingo
    • 2
  • Julio Galindo
    • 2
  • Francisca García-Moreno
    • 2
  • Gloria Rodriguez-Velasco
    • 2
  • Antonia Martín-Hidalgo
    • 3
    • 4
  • Clotilde Vazquez
    • 1
    • 4
  • Héctor F. Escobar-Morreale
    • 1
    • 5
  • José I. Botella-Carretero
    • 1
    • 4
  1. 1.Department of Endocrinology and NutritionHospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
  2. 2.Department of Digestive and General SurgeryHospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
  3. 3.Department of Biochemistry-ResearchHospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
  4. 4.Centro de Investigación Biomédica en Red-Fisiopatología de Obesidad y Nutrición (CIBERobn)MadridSpain
  5. 5.Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)MadridSpain

Personalised recommendations