Obesity Surgery

, Volume 24, Issue 5, pp 796–805 | Cite as

The Effect of Bariatric Surgery on Intestinal Absorption and Transit Time

  • Kirstin A. Carswell
  • Royce P. Vincent
  • Ajay P. Belgaumkar
  • Roy A. Sherwood
  • Stephanie A. Amiel
  • Ameet G. Patel
  • Carel W. le Roux
Original Contributions



Bariatric surgical procedures are classified by their presumed mechanisms of action: restrictive, malabsorptive or a combination of both. However, this dogma is questionable and remains unproven. We investigated post-operative changes in nutrient absorption and transit time following bariatric surgery.


Participants were recruited into four groups: obese controls (body mass index (BMI) >30 kg/m2, n = 7), adjustable gastric banding (n = 6), Roux-en-Y gastric bypass (RYGB, n = 7) and biliopancreatic diversion with duodenal switch (DS, n = 5). Participants underwent sulphasalazine/sulphapyridine tests (oro-caecal transit time); fasting plasma citrulline (functional enterocyte mass); 3 days faecal collection for faecal elastase 1 (FE-1); calprotectin (FCp); faecal fatty acids (pancreatic exocrine function, gut inflammation and fat excretion, respectively); and 5 h d-xylose, l-rhamnose and lactulose test (intestinal absorption and permeability).


Age and gender were not different but BMI differed between groups (p = 0.001). No difference in oro-caecal transit time (p = 0.935) or functional enterocyte mass (p = 0.819) was detected. FCp was elevated post-RYGB vs obese (p = 0.016) and FE-1 was reduced post-RYGB vs obese (p = 0.002). Faecal fat concentrations were increased post-DS vs obese (p = 0.038) and RYGB (p = 0.024) and were also higher post-RYGB vs obese (p = 0.033). Urinary excretion of d-xylose and l-rhamnose was not different between the groups; however, lactulose/rhamnose ratio was elevated post-DS vs other groups (all p < 0.02), suggesting increased intestinal permeability.


Following RYGB, there are surprisingly few abnormalities or indications of severe malabsorption of fats or sugars. Small bowel adaptation after bariatric surgery may be key to understanding the mechanisms responsible for the beneficial metabolic effects of these operations.


Bariatrics Bariatric surgery Gastric bypass Biliopancreatic diversion Intestinal absorption 



Adjustable gastric band


Biliopancreatic diversion


Body mass index


Biliopancreatic diversion with duodenal switch


Enzyme linked immunosorbent assay


Faecal calprotectin


Faecal elastase-1


Glucagon-like peptide 1


Glucagon-like peptide 2


High-performance liquid chromatography


Peptide tyrosine-tyrosine


Roux-en-Y gastric bypass


Small bowel permeability test






  1. 1.
    O’Brien PE. Bariatric surgery: mechanisms, indications and outcomes. J Gastroenterol Hepatol. 2010;25:1358–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Brolin RE, Kenler HA, Gorman JH, et al. Long-limb gastric bypass in the superobese: a prospective randomised study. Ann Surg. 1992;215:387–95.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Scopinaro N, Gianetta E, Civalleri D, et al. Biliopancreatic bypass for obesity: initial experience in man. Br J Surg. 1979;66:618–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surgery. 1996;119:261–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Hess DS, Hess DW. Biliopancreatic diversion with a duodenal switch. Obes Surg. 1998;8:267–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Marceau P, Hould FS, Simard S, et al. Biliopancreatic diversion with duodenal switch. World J Surg. 1998;22:947–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Sovik TT, Aashelm ET, Taha O, et al. Weight loss, cardiovascular risk factors, and quality of life after gastric bypass and duodenal switch. Ann Intern Med. 2011;155:281–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Kennedy M, Chinwah P, Wade DN. A pharmacological method of measuring mouth caecal transit time in man. Br J Clin Pharmacol. 1979;8:372–3.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kellow JE, Borody TJ, Phillip SF, et al. Sulfapyridine appearance in plasma after salicylazosulfapyridine. Gastroenterology. 1986;91:396–400.PubMedGoogle Scholar
  11. 11.
    Saniforth DH. Comparison of oro-caecal transit times assessed by the lactulose/breath hydrogen and the sulphasalazine/sulphapyridine methods. Gut. 1989;30:978–82.CrossRefGoogle Scholar
  12. 12.
    Chungi VS, Rekhi GS, Shargel L. A simple and rapid liquid chromatographic method for the determination of major metabolites of sulphasalazine in biological fluids. J Pharmaceut Sci. 1989;78:235–8.CrossRefGoogle Scholar
  13. 13.
    Curis E, Crenn P, Cynober L. Citrulline and the gut. Curr Opin Clin Nutr Metab Care. 2007;10:620–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber FL, Reiser BJ. Relationship of plasma amino acids to nitrogen balance and portal-systemic encephalopathy in alcoholic liver disease. Dig Dis Sci. 1982;27:103–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Papadia C, Sherwood RA, Kalantzis C, et al. Plasma citrulline concentration: a reliable marker of small bowel absorptive capacity independent of intestinal inflammation. Am J Gastroenterol. 2007;102:1474–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Sherwood RA. Amino acid measurement by high performance liquid chromatography using electrochemical detection. J Neurosci Methods. 1990;34:17–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Stein J, Jung M, Sziegoleit A, et al. Immunoreactive elastase 1: clinical evaluation of a new noninvasive test of pancreatic function. Clin Chem. 1996;42:222–6.PubMedGoogle Scholar
  18. 18.
    Dominguez-Munoz JE, Hieronymus C, Sauerbruch T, et al. Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol. 1995;90:1834–7.PubMedGoogle Scholar
  19. 19.
    Symersky T, van der Zon A, Biemond I, et al. Faecal elastase-1: helpful in analysing streatorrhoea? Neth J Med. 2004;62:286–9.PubMedGoogle Scholar
  20. 20.
    Kampanis P, Ford L, Berg J. Development and validation of an improved test for the measurement of human faecal elastase-1. Ann Clin Biochem. 2009;46:33–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas PD, Forbes A, Green J et al. Guidelines for the investigation of chronic diarrhoea. Gut 2003;52(suppl V):v1-5.Google Scholar
  22. 22.
    Duncan A, Hill PG. A review of the quality of gastrointestinal investigations performed in UK laboratories. Ann Clin Biochem. 2007;44:145–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Konikoff MR, Denson LA. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:524–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Lundberg JO, Hellstrom PM, Fagerhol MK, et al. Technology insight: calprotectin, lactoferrin and nitric oxide as novel markers of inflammatory bowel disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2:96–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Fagerhol MK. Calprotectin, a faecal marker or organic gastrointestinal abnormality. Lancet. 2000;356:1783–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Van de Kamer JH, Bokkel Huinink HT, Weyers HA. Rapid method for the determination of fat in feces. J Biol Chem. 1949;177:347–55.Google Scholar
  27. 27.
    Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterol. 1995;108:1566–81.CrossRefGoogle Scholar
  28. 28.
    Derikx JPM, Luyer MDP, Heineman E, et al. Non-invasive markers of gut wall integrity in health and disease. World J Gastroenterol. 2010;16:5272–9.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Sharpstone D, Neild P, Crane R, et al. Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhoea. Gut. 1999;45:70–6.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Burton PR, Yap K, Brown WA, et al. Effects of adjustable gastric bands on gastric emptying, supra- and infraband transit and satiety: a randomized double-blind crossover trial using a new technique of band visualization. Obes Surg. 2010;20:1690–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Dixon AFR, Dixon JB, O’Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. 2005;90:813–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Naslund I. The size of the gastric outlet and the outcome of surgery for obesity. Acta Chir Scand. 1986;152:205–10.PubMedGoogle Scholar
  33. 33.
    Nishie A, Brown B, Barloon T, et al. Comparison of size of proximal gastric pouch and short-term weight loss following routine upper gastrointestinal contrast study after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2007;17:1183–8.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Connor EA, Carlin AM. Lack or correlation between variation in small-volume gastric pouch size and weight loss after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2008;4:399–403.PubMedCrossRefGoogle Scholar
  35. 35.
    Madan AK, Tichansky DS, Phillips JC. Does pouch size matter? Obes Surg. 2007;17:317–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Halverson JD, Koehler RE. Gastric bypass: analysis of weight loss and factors determining success. Surgery. 1981;90:446–55.PubMedGoogle Scholar
  37. 37.
    Roberts K, Duffy A, Kaufman J, et al. Size matters: gastric pouch size correlates with weight loss after laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2007;21:1397–402.PubMedCrossRefGoogle Scholar
  38. 38.
    Björklund P, Laurenius A, Een E, et al. Is the Roux limb a determinant for meal size after gastric bypass surgery? Obes Surg. 2010;20:1408–14.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Scopinaro N, Gianetta E, Civalleri D, et al. Two years of clinical experience with bilio-pancreatic bypass for obesity. Am J Clin Nutr. 1980;33:506–14.PubMedGoogle Scholar
  40. 40.
    Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Hould FS, Lagace M, Marceau P, et al. Hastened gastric emptying after partial gastrectomy and duodenal switch. Obes Surg. 1996;6:121–2.Google Scholar
  42. 42.
    Hedburg J, Hedenstrom H, Karlsson FA, et al. Gastric emptying and postprandial PYY response after biliopancreatic diversion with duodenal switch. Obes Surg. 2011;21:609–15.CrossRefGoogle Scholar
  43. 43.
    Naslund I, Beckman K-W. Gastric emptying rate after gastric bypass and gastroplasty. Scand J Gastroenterol. 1987;22:193–201.PubMedCrossRefGoogle Scholar
  44. 44.
    Horowitz M, Cook DJ, Collins PJ, et al. Measurement of gastric emptying after gastric bypass surgery using radionuclides. Br J Surg. 1982;69:655–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Pellegrini CA, Deveney CW, Patti MG, et al. Intestinal transit of food after total gastrectomy and Roux-en-Y esophagojejunostomy. Am J Surg. 1986;151:177–85.CrossRefGoogle Scholar
  46. 46.
    Gonlachanvit S, Coleski R, Owyang C, et al. Inhibitory actions of a high fibre diet on intestinal gas transit in healthy volunteers. Gut. 2004;53:1577–82.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Flint A, Raben A, Ersboll AK, et al. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes. 2001;25:781–92.CrossRefGoogle Scholar
  48. 48.
    Read NW, Cammack J, Edwards C, et al. Is the transit time of a meal through the small intestine related to the rate at which it leaves the stomach? Gut. 1982;23:824–8.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Skroubis G, Sakellaropoulos G, Pouggouras K, et al. Comparison of nutritional deficiencies after Roux-en-Y gastric bypass and after biliopancreatic diversion with a Roux-en-Y gastric bypass. Obes Surg. 2002;12:551–8.PubMedCrossRefGoogle Scholar
  50. 50.
    DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 1. Am J Gastroenterol. 2004;99:1386–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Le Roux CW, Borg C, Wallis K, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252:50–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Stock-Damge C, Aprahamian M, Raul F, et al. Small-intestinal and colonic changes after biliopancreatic bypass for morbid obesity. Scand J Gastroenterol. 1986;21:1115–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003;17:161–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Estall JL, Drucker DJ. Dual regulation of cell proliferation and survival via activation of glucagon-like peptide-2 receptor signalling. J Nutr. 2003;133:3708–11.PubMedGoogle Scholar
  55. 55.
    Jeppesen PB. Clinical significance of GLP-2 in short-bowel syndrome. J Nutr. 2003;133:3721–4.PubMedGoogle Scholar
  56. 56.
    Mason EE, Munns JR, Kealey GP, et al. Effect of gastric bypass on gastric secretion. Am J Surg. 1976;131:162–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Ponsky TA, Brody F, Pucci E. Alterations in gastrointestinal physiology after Roux-en-Y gastric bypass. Am Coll Surg. 2005;201:125–31.CrossRefGoogle Scholar
  58. 58.
    Satake K, Nishiwaki H, Uneyama K. Comparative studies of plasma secretin response after reconstructive surgery of the stomach and pancreas. Ann Surg. 1985;201:447–51.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Emas S, Billings A, Grossman MI. Effects of gastrin and pentagastrin on gastric and pancreatic secretion in dogs. Scand J Gastroenterol. 1968;3:234–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Mason EE, Ito C. Gastric bypass. Ann Surg. 1969;170:329–36.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Borg CM, le Roux CW, Ghatei MA, et al. Biliopancreatic diversion in rats is associated with intestinal hypertrophy and with increased GLP-1, GLP-2 and PYY levels. Obes Surg. 2007;17:1193–8.PubMedCrossRefGoogle Scholar
  63. 63.
    le Roux CW, Aylwin SJB, Batterham RL, et al. Gut hormone profiles following bariatric surgery favour an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Wettergren A, Schjoldager B, Mortensen PE, et al. Truncated GLP-1 (Proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993;38:665–73.PubMedCrossRefGoogle Scholar
  65. 65.
    Wettergren A, Petersen H, Orskov C, et al. Glucagon-like peptide-1 7-36 amide and peptide YY from the L-cell of the ileal mucosa are potent inhibitors of vagally induced gastric acid secretion in man. Scand J Gastroenterol. 1994;29:501–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Lluis F, Gomez G, Fujimura M, et al. Peptide YY inhibits nutrient-, hormonal-, and vagally stimulated pancreatic exocrine secretion. Pancreas. 1987;2:454–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Lluis F, Gomez M, Fujimura M, et al. Peptide YY inhibits pancreatic secretion by inhibiting cholecystokinin release in the dog. Gastroenterol. 1988;94:137–44.Google Scholar
  68. 68.
    Allen JM, Fitzpatrick ML, Yeats JC, et al. Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion. 1984;30:255–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Pappas TN, Debas HT, Goto Y, et al. Peptide YY inhibits meal-stimulated pancreatic and gastric secretion. Am J Physiol Gastrointest Liver Physiol. 1985;248:G118–23.Google Scholar
  70. 70.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Nijhuis J, Rensen SS, Slaats Y, et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity. 2009;17:2014–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Park HK, Sinar DR, Sloss RR, et al. Histologic and endoscopic studies before and after gastric bypass surgery. Arch Pathol Lab Med. 1986;110:1164–7.PubMedGoogle Scholar
  74. 74.
    Sinar DR, Flickinger EG, Park HK, et al. Retrograde endoscopy of the bypassed stomach segment after gastric bypass surgery: unexpected lesions. South Med J. 1985;78:255–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Flickinger EG, Sinar DR, Pories WJ, et al. The bypassed stomach. Am J Surg. 1985;149:151–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol. 2008;14:5630–40.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Pezzilli R, Barassi A, Morselli-Labate AM, et al. Fecal calprotectin and elastase 1 determinations in patients with pancreatic diseases: a possible link between pancreatic insufficiency and intestinal inflammation. J Gastroenterol. 2007;42:754–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Ito C, Mason EE. Gastric bypass and pancreatic secretion. Surgery. 1971;69:526–32.PubMedGoogle Scholar
  79. 79.
    Choban PS, Flancbaum L. The effect of roux limb lengths on outcome after Roux-en-Y gastric bypass: a prospective, randomized clinical trial. Obes Surg. 2004;12:540–5.CrossRefGoogle Scholar
  80. 80.
    Feng JJ, Gagner M, Pomp A, et al. Effect of standard vs extended Roux limb length on weight loss outcomes after laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2003;17:1055–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Inabnet WB, Quinn T, Gagner M, et al. Laparoscopic Roux-en-Y gastric bypass in patients with BMI <50: a prospective randomized trial comparing short and long limb lengths. Obes Surg. 2005;15:51–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Orci L, Chilcott M, Huber O. Short versus long Roux-limb length in Roux-en-Y gastric bypass surgery for the treatment of morbid and super obesity: a systematic review of the literature. Obes Surg. 2011;21:797–804.PubMedCrossRefGoogle Scholar
  83. 83.
    Odstrcil EA, Martinez JG, Santa Ana CA, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Kumar R, Lieske JC, Collazo-Clavell ML, et al. Fat malabsorption and increased intestinal oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery. 2011;149:654–61.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Mingrone G, DeGaetano A, Greco AV, et al. Reversibility of insulin resistance in obese diabetic patients: role of plasma lipids. Diabetologia. 1997;40:599–605.PubMedCrossRefGoogle Scholar
  86. 86.
    Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endo Metab. 2004;89:2608–15.CrossRefGoogle Scholar
  88. 88.
    le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Tolessa T, Gutniak M, Holst JJ, et al. Inhibitory effect of glucagon-like peptide-1 on small bowel motility. J Clin Invest. 1998;102:764–74.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Tolessa T, Gutniak M, Holst JJ, et al. Glucagon-like peptide-1 retards gastric emptying and small bowel transit in the rat. Dig Dis Sci. 1998;43:2284–90.PubMedCrossRefGoogle Scholar
  91. 91.
    O’Brien PE, McPhail T, Chaston TB, et al. Systematic review of medium-term weight loss after bariatric surgery. Obes Surg. 2006;16:1032–40.PubMedCrossRefGoogle Scholar
  92. 92.
    Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244:715–22.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Schoeller DA. Limitations in the assessment of dietary energy intake by self-report. Metabolism. 1995;44:18–22.PubMedCrossRefGoogle Scholar
  94. 94.
    Lichtman SW, Pisarska K, Berman ER, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327:1893–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kirstin A. Carswell
    • 1
  • Royce P. Vincent
    • 2
  • Ajay P. Belgaumkar
    • 1
  • Roy A. Sherwood
    • 2
  • Stephanie A. Amiel
    • 3
  • Ameet G. Patel
    • 1
  • Carel W. le Roux
    • 2
    • 4
  1. 1.Department of General SurgeryKing’s College HospitalLondonUK
  2. 2.Department of Clinical BiochemistryKing’s College HospitalLondonUK
  3. 3.Division of Diabetes and Nutritional SciencesKing’s College LondonLondonUK
  4. 4.Experimental Pathology, Conway Institute, School of Medicine and Medical ScienceUniversity College DublinDublinIreland

Personalised recommendations