Obesity Surgery

, Volume 24, Issue 1, pp 128–133 | Cite as

Genetic Risk Score Does Not Predict the Outcome of Obesity Surgery

  • P. Käkelä
  • T. Jääskeläinen
  • J. Torpström
  • I. Ilves
  • S. Venesmaa
  • M. Pääkkönen
  • H. Gylling
  • H. Paajanen
  • M. Uusitupa
  • J. Pihlajamäki
Original Contributions

Abstract

Background

We evaluated the benefit of using combined genetic risk score (GRS) of known single nucleotide polymorphisms (SNPs) for body mass index (BMI) and waist/hip ratio (WHR) in the prediction of weight loss and weight regain after obesity surgery.

Methods

A total of 163 consecutive morbidly obese individuals undergoing Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) in a single bariatric center in Finland were recruited. Fasting blood samples were drawn after 12 h of fasting before and 1 year after bariatric operation. Data for weight regain and medication were collected with a questionnaire after 3.1 ± 2.7 years (mean ± SD) follow-up. Nonalcoholic steatohepatitis (NASH) was diagnosed with liver histology. Twenty BMI- and 13 WHR-related SNPs were genotyped. Linear regression was used to identify factors predicting weight loss and weight regain.

Results

Lower baseline BMI predicted greater decline in BMI (p = 0.0005) and excess weight loss (EWL) (p = 0.009). In the multiple linear regression analysis age and BMI, explained the variance of EWL during the first year while GRS, sex, fasting plasma glucose, serum insulin and NASH diagnosis did not have any effect. None of the baseline clinical variables explained BMI regain. The combined GRS did not associate with weight or BMI at baseline, with 1-year changes or with weight regain between 1 year and an average of 3.1 years follow-up.

Conclusions

In our study, we found that the genotype risk score does not predict weight loss after obesity surgery while lower baseline BMI predicted the greater weight loss.

Keywords

Laparoscopic Roux-en-Y gastric bypass Obesity Genetics Weight loss 

Supplementary material

11695_2013_1080_MOESM1_ESM.tif (148 kb)
ESM 1(TIFF 148 kb)
11695_2013_1080_MOESM2_ESM.tif (128 kb)
ESM 2(TIFF 128 kb)
11695_2013_1080_MOESM3_ESM.tif (107 kb)
ESM 3(TIFF 106 kb)

References

  1. 1.
    Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–56.PubMedCrossRefGoogle Scholar
  2. 2.
    Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Alger-Mayer S, Polimeni JM, Malone M. Preoperative weight loss as a predictor of long-term success following Roux-en-Y gastric bypass. Obes Surg. 2008;18(7):772–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Livhits M, Mercado C, Yermilov I, et al. Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes Surg. 2012;22(1):70–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Kadeli DK, Sczepaniak JP, Kumar K et al. The effect of preoperative weight loss before gastric bypass: a systematic review. J Obes 2012; 2012. Epub 2012 June 7. ID: 867540, 7 pagesGoogle Scholar
  6. 6.
    Alvarado R, Alami RS, Hsu G, et al. The impact of preoperative weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15(9):1282–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Ma Y, Pagoto SL, Olendzki BC, et al. Predictors of weight status following laparoscopic gastric bypass. Obes Surg. 2006;16(9):1227–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Biertho L, Steffen R, Ricklin T, et al. Laparoscopic gastric bypass versus laparoscopic adjustable gastric banding. A comparative study of 1,200 cases. J Am Coll Surg. 2003;197(4):545–6.CrossRefGoogle Scholar
  9. 9.
    Magro DO, Geloneze B, Delfini R, et al. Long-term weight regain after gastric bypass: a 5-year prospective study. Obes Surg. 2008;18(6):648–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with Body Mass Index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41:18–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Loos RJ, Lindgren CM, Li S, et al. Common variant near MC4R are associated with Fat Mass, Weight and risk of obesity. Nat Genet. 2008;40:768–75.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Heid IM, Jackson AU, Randall JC, et al. Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010;42:949–60.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sarzynski MA, Jacobson P, Rankinen T, et al. Associations of markers in 11 obesity candidate genes with maximal weight loss and weight regain in the SOS bariatric surgery cases. Int J Obes. 2011;35:676–83.CrossRefGoogle Scholar
  18. 18.
    Pihlajamäki J, Kuulasmaa T, Kaminska D, et al. Serum interleukin 1 receptor antagonist as an independent marker of nonalcoholic steatohepatitis in humans. Int J Hepatol. 2012;3:663–70.Google Scholar
  19. 19.
    Conference NIH. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med. 1991;115:956–61.CrossRefGoogle Scholar
  20. 20.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27:5–10.CrossRefGoogle Scholar
  21. 21.
    Brunt EM, Janney CG, Di Bisceglie AM, et al. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Deitel M, Greenstein RJ. Recommendations for reporting weight loss. Obes Surg. 2003;13:159–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Li S, Zhao JH, Luan J, et al. Physical activity attenuates the genetic predisposition to obesity in 20 000 men and women from EPIC-Norfolk prospective population study. PLoS Med. 2010;7(8):e1000332.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Christou NV, Look D, Maclean LD. Weight gain after short- and long-limb gastric bypass in patients followed for longer than 10 years. Ann Surg. 2006;244(5):734–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Pajecki D, Dalcanalle L, de Oliveira CPMS, et al. Follow-up of Roux-en-Y gastric bypass patients at 5 or more years postoperatively. Obes Surg. 2007;17:601–7.PubMedCrossRefGoogle Scholar
  26. 26.
    MacLean LD, Rhode BM, Nohr LW. Late outcome of isolated gastric bypass. Ann Surg. 1999;231:524–8.CrossRefGoogle Scholar
  27. 27.
    Brolin RE, Kenler HA, Gorman JH, et al. Long-limb gastric bypass in the superobese. A prospective randomized study. Ann Surg. 1992;215:387–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Sjöström L, Narbro K, Sjöström CD, et al. Swedish Obese Subjects Study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Maggard MA, Shugarman LR, Suttorp M, et al. Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005;142(7):547–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–85.PubMedGoogle Scholar
  31. 31.
    Chikunguwo S, Wolfe L, Dodson P, et al. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2009;6(3):254–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Mingrone G, Panunzi S, Gaetano A, et al. Bariatric Surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Pories WJ, Dohm LG, Mansfield CJ. Beyond the BMI: The search for better guidelines for bariatric surgery. Obesity. 2010;18(5):865–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • P. Käkelä
    • 1
  • T. Jääskeläinen
    • 2
  • J. Torpström
    • 3
  • I. Ilves
    • 1
  • S. Venesmaa
    • 1
  • M. Pääkkönen
    • 1
  • H. Gylling
    • 2
    • 4
  • H. Paajanen
    • 1
  • M. Uusitupa
    • 2
    • 5
  • J. Pihlajamäki
    • 2
    • 3
  1. 1.Department of SurgeryUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
  2. 2.Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
  3. 3.Department of Clinical Nutrition and Obesity CenterKuopio University HospitalKuopioFinland
  4. 4.Department of Medicine, Division of Internal MedicineUniversity of HelsinkiHelsinkiFinland
  5. 5.Research UnitKuopio University HospitalKuopioFinland

Personalised recommendations