Obesity Surgery

, Volume 23, Issue 12, pp 1957–1965 | Cite as

Laparoscopic Sleeve Gastrectomy Compared to a Multidisciplinary Weight Loss Program for Obesity—Effects on Body Composition and Protein Status

  • Asja E. Friedrich
  • Antje Damms-Machado
  • Tobias Meile
  • Nicole Scheuing
  • Katrin Stingel
  • Maryam Basrai
  • Markus A. Küper
  • Klaus M. Kramer
  • Alfred Königsrainer
  • Stephan C. Bischoff
Original Contributions



Optimal obesity therapy is a matter of debate. Besides weight reduction, other criteria such as safety and nutritional status are of relevance. Therefore, we compared a favored surgical intervention with the most effective conservative treatment regarding anthropometry and nutritional status.


Fifty-four obese patients were included who underwent laparoscopic sleeve gastrectomy (LSG, n = 27) or a 52-week multidisciplinary intervention program (MIP, n = 27) for weight loss. Body weight, body composition assessed by bioelectrical impedance analysis, and serum protein levels were measured before and within 12 months after intervention.


After 1 year of observation, excess weight loss was more pronounced following LSG (65 %) compared to MIP (38 %, p < 0.001). In both groups, body fat was clearly reduced, but a higher reduction occurred in the LSG group. However, protein status deteriorated particularly in the LSG group. Within 1 year, body cell mass declined from 37.1 to 26.9 kg in the LSG group, but only from 35.7 to 32.2 kg in the MIP group. This resulted in an increased mean extracellular mass/body cell mass ratio (1.42 versus 1.00, p < 0.001), in a decreased mean phase angle (4.4° versus 6.6°, p < 0.001), and in a lower prealbumin level in serum (p < 0.02) in the LSG group compared to the MIP group.


LSG, compared to MIP, was more effective regarding excess weight loss and body fat loss within 1 year, however, induced more pronounced muscle mass and protein loss, possibly requiring particular interventions such as exercise or protein supplements.


Laparoscopic sleeve gastrectomy Formula diet Body composition Protein–energy malnutrition Body cell mass Phase angle 



This work was supported by the “Competence Network of Obesity,” research group “Obesity and the gastrointestinal tract,” coordinated by SCB and funded by the Federal Ministry of Education and Research, Germany (No. FKZ 01GI0843).

Conflict of interest

All authors declare no conflict of interest; they are all independent from the funding institutions. The authors are part of the Competence network of obesity, which is primarily funded by a research grant of the Federal Ministry of Education and Research, Germany. Within this network, the authors are funded in part by Covidien Germany GmbH, by Johnson & Johnson, Ethicon Endo-Surgery GmbH, Germany, and by Nestlé Inc., Germany. The sponsors had no influence in study design, analysis, and interpretation of data, as well as in the writing of the manuscript. No other relationships or activities exist that could appear to have influenced the submitted work.


  1. 1.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19:1605–11. PMID: 19885707.PubMedCrossRefGoogle Scholar
  2. 2.
    Maggard MA, Shugarman LR, Suttorp M, et al. Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005;142:547–59.PubMedCrossRefGoogle Scholar
  3. 3.
    Sjöström L, Lindroos A, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Strain GW, Gagner M, Pomp A, et al. Comparison of weight loss and body composition changes with four surgical procedures. Surg Obes Relat Dis. 2009;5:582–7. PMID: 19560983.PubMedCrossRefGoogle Scholar
  5. 5.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37. PMID: 15479938.PubMedCrossRefGoogle Scholar
  6. 6.
    Appel LJ, Clark JM, Yeh H, et al. Comparative effectiveness of weight-loss interventions in clinical practice. N Engl J Med. 2011;365:1959–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Ryan DH, Johnson WD, Myers VH, et al. Nonsurgical weight loss for extreme obesity in primary care settings: results of the Louisiana Obese Subjects Study. Arch Intern Med. 2010;170:146–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Bischoff SC, Damms-Machado A, Betz C, et al. Multicenter evaluation of an interdisciplinary 52-week weight loss program for obesity with regard to body weight, comorbidities and quality of life—a prospective study. Int J Obes (Lond). 2012;36:614–24. PMID: 21673653.CrossRefGoogle Scholar
  9. 9.
    Leonetti F, Capoccia D, Coccia F, et al. Obesity, type 2 diabetes mellitus, and other comorbidities: a prospective cohort study of laparoscopic sleeve gastrectomy vs medical treatment. Arch Surg. 2012;147:694–700. PMID: 22508671.PubMedCrossRefGoogle Scholar
  10. 10.
    Mingrone G, Panunzi S, de Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76. PMID: 22449319.PubMedCrossRefGoogle Scholar
  12. 12.
    Dixon JB, O'Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23. PMID: 18212316.PubMedCrossRefGoogle Scholar
  13. 13.
    Batsis JA, Romero-Corral A, Collazo-Clavell ML, et al. Effect of bariatric surgery on the metabolic syndrome: a population-based, long-term controlled study. Mayo Clin Proc. 2008;83:897–907. PMID: 18674474.PubMedGoogle Scholar
  14. 14.
    Faria SL, Faria OP, Buffington C, et al. Dietary protein intake and bariatric surgery patients: a review. Obes Surg. 2011;21:1798–805. PMID: 21590346.PubMedCrossRefGoogle Scholar
  15. 15.
    Damms-Machado A, Friedrich A, Kramer KM, et al. Pre- and postoperative nutritional deficiencies in obese patients undergoing laparoscopic sleeve gastrectomy. Obes Surg. 2012;22:881–9. PMID: 22403000.PubMedCrossRefGoogle Scholar
  16. 16.
    Faintuch J, Matsuda M, Cruz MELF, et al. Severe protein–calorie malnutrition after bariatric procedures. Obes Surg. 2004;14:175–81. PMID: 15018745.PubMedCrossRefGoogle Scholar
  17. 17.
    Bloomberg RD, Fleishman A, Nalle JE, et al. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15:145–54. PMID: 15802055.PubMedCrossRefGoogle Scholar
  18. 18.
    Malinowski SS. Nutritional and metabolic complications of bariatric surgery. Am J Med Sci. 2006;331:219–25. PMID: 16617238.PubMedCrossRefGoogle Scholar
  19. 19.
    Bal BS, Finelli FC, Shope TR, et al. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56. PMID: 22525731.PubMedCrossRefGoogle Scholar
  20. 20.
    Kellum JM, Chikunguwo SM, Maher JW, et al. Long-term results of malabsorptive distal Roux-en-Y gastric bypass in superobese patients. Surg Obes Relat Dis. 2011;7:189–93. PMID: 21145293.PubMedCrossRefGoogle Scholar
  21. 21.
    Kueper MA, Kramer KM, Kirschniak A, et al. Laparoscopic sleeve gastrectomy: standardized technique of a potential stand-alone bariatric procedure in morbidly obese patients. World J Surg. 2008;32:1462–5. PMID: 18368447.PubMedCrossRefGoogle Scholar
  22. 22.
    Runkel N, Colombo-Benkmann M, Hüttl TP, et al. Bariatric surgery. Dtsch Arztebl Int. 2011;108:341–6. PMID: 21655459.PubMedGoogle Scholar
  23. 23.
    Dörhöfer R, Pirlich M. Das BIA Kompendium. Data Input GmbH, Germany. 2007. Available from: http://www.data-input.de/_site/_data/pdf/komp_d_all.pdf. Accessed 15 Jan 2013
  24. 24.
    Wang J, Zhang Y, Chen H, et al. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. J Strength Cond Res. 2013;27:236–43. PMID: 22344056.PubMedCrossRefGoogle Scholar
  25. 25.
    Jiménez A, Omaña W, Flores L, et al. Prediction of whole-body and segmental body composition by bioelectrical impedance in morbidly obese subjects. Obes Surg. 2012;22:587–93. PMID: 22506280.PubMedCrossRefGoogle Scholar
  26. 26.
    Thibault R, Pichard C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab. 2012;60:6–16. PMID: 22179189.PubMedCrossRefGoogle Scholar
  27. 27.
    Kyle UG, Genton L, Pichard C. Low phase angle determined by bioelectrical impedance analysis is associated with malnutrition and nutritional risk at hospital admission. Clin Nutr. 2012;32:294–9. PMID: 22921419.PubMedCrossRefGoogle Scholar
  28. 28.
    Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.PubMedCrossRefGoogle Scholar
  29. 29.
    Bray GA, Smith SR, Banerji MA, Tripathy D, Clement SC, Buchanan TA, Henry RR, Kitabchi AE, Mudaliar S, Musi N, Ratner RE, Schwenke DC, Stentz FB, Reaven PD, DeFronzo RA. Effect of pioglitazone on body composition and bone density in subjects with prediabetes in the ACT NOW trial. Diabetes Obes Metab. 2013. doi: 10.1111/dom.12099
  30. 30.
    Boza C, Salinas J, Salgado N, et al. Laparoscopic sleeve gastrectomy as a stand-alone procedure for morbid obesity: report of 1,000 cases and 3-year follow-up. Obes Surg. 2012;22:866–71. PMID: 22438219.PubMedCrossRefGoogle Scholar
  31. 31.
    Shi X, Karmali S, Sharma AM, et al. A review of laparoscopic sleeve gastrectomy for morbid obesity. Obes Surg. 2010;20:1171–7. PMID: 20379795.PubMedCrossRefGoogle Scholar
  32. 32.
    Aggarwal S, Kini SU, Herron DM. Laparoscopic sleeve gastrectomy for morbid obesity: a review. Surg Obes Relat Dis. 2007;3:189–94. PMID: 17386400.PubMedCrossRefGoogle Scholar
  33. 33.
    Nocca D, Krawczykowsky D, Bomans B, et al. A prospective multicenter study of 163 sleeve gastrectomies: results at 1 and 2 years. Obes Surg. 2008;18:560–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Tucker ON, Szomstein S, Rosenthal RJ. Indications for sleeve gastrectomy as a primary procedure for weight loss in the morbidly obese. J Gastrointest Surg. 2008;12:662–7. PMID: 18264685.PubMedCrossRefGoogle Scholar
  35. 35.
    Du H, Feskens E. Dietary determinants of obesity. Acta Cardiol. 2010;65:377–86. PMID: 20821929.PubMedGoogle Scholar
  36. 36.
    Gardner CD, Kiazand A, Alhassan S, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA. 2007;297:969–77. PMID: 17341711.PubMedCrossRefGoogle Scholar
  37. 37.
    Vatier C, Henegar C, Ciangura C, et al. Dynamic relations between sedentary behavior, physical activity, and body composition after bariatric surgery. Obes Surg. 2012;22:1251–6. PMID: 22351039.PubMedCrossRefGoogle Scholar
  38. 38.
    Andreu A, Moizé V, Rodríguez L, et al. Protein intake, body composition, and protein status following bariatric surgery. Obes Surg. 2010;20:1509–15. PMID: 20820937.PubMedCrossRefGoogle Scholar
  39. 39.
    de Aquino LA, Pereira SE, de Souza Silva J, et al. Bariatric surgery: impact on body composition after Roux-en-Y gastric bypass. Obes Surg. 2012;22:195–200. PMID: 21881836.PubMedCrossRefGoogle Scholar
  40. 40.
    Di Renzo L, Carbonelli MG, Bianchi A, et al. Body composition changes after laparoscopic adjustable gastric banding: what is the role of -174GC interleukin-6 promoter gene polymorphism in the therapeutic strategy? Int J Obes (Lond). 2012;36:369–78. PMID: 21730965.CrossRefGoogle Scholar
  41. 41.
    Madan AK, Kuykendall S, Orth WS, et al. Does laparoscopic gastric bypass result in a healthier body composition? An affirmative answer. Obes Surg. 2006;16:465–8. PMID: 16608612.PubMedCrossRefGoogle Scholar
  42. 42.
    Dixon JB, Strauss BJG, Laurie C, et al. Changes in body composition with weight loss: obese subjects randomized to surgical and medical programs. Obesity (Silver Spring). 2007;15:1187–98. PMID: 17495195.CrossRefGoogle Scholar
  43. 43.
    Aarts EO, Janssen IMC, Berends FJ. The gastric sleeve: losing weight as fast as micronutrients? Obes Surg. 2011;21:207–11. PMID: 21088925.PubMedCrossRefGoogle Scholar
  44. 44.
    Leivonen MK, Juuti A, Jaser N, et al. Laparoscopic sleeve gastrectomy in patients over 59 years: early recovery and 12-month follow-up. Obes Surg. 2011;21:1180–7. PMID: 21625908.PubMedCrossRefGoogle Scholar
  45. 45.
    Snyder-Marlow G, Taylor D, Lenhard MJ. Nutrition care for patients undergoing laparoscopic sleeve gastrectomy for weight loss. J Am Diet Assoc. 2010;110:600–7. PMID: 20338286.PubMedCrossRefGoogle Scholar
  46. 46.
    DeLegge MH, Drake LM. Nutritional assessment. Gastroenterol Clin North Am. 2007;36:1–22. PMID: 17472872.PubMedCrossRefGoogle Scholar
  47. 47.
    Melissas J, Daskalakis M, Koukouraki S, et al. Sleeve gastrectomy—a “food limiting” operation. Obes Surg. 2008;18:1251–6. PMID: 18663545.PubMedCrossRefGoogle Scholar
  48. 48.
    Braghetto I, Davanzo C, Korn O, et al. Scintigraphic evaluation of gastric emptying in obese patients submitted to sleeve gastrectomy compared to normal subjects. Obes Surg. 2009;19:1515–21. PMID: 19714384.PubMedCrossRefGoogle Scholar
  49. 49.
    Keller U. Dietary proteins in obesity and in diabetes. Int J Vitam Nutr Res. 2011;81:125–33. PMID: 22139563.PubMedCrossRefGoogle Scholar
  50. 50.
    Josse AR, Atkinson SA, Tarnopolsky MA, et al. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr. 2011;141:1626–34. PMID: 21775530.PubMedCrossRefGoogle Scholar
  51. 51.
    Frimel TN, Sinacore DR, Villareal DT. Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med Sci Sports Exerc. 2008;40:1213–9. PMID: 18580399.PubMedCrossRefGoogle Scholar
  52. 52.
    Heber D, Greenway FL, Kaplan LM, et al. Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2010;95:4823–43. PMID: 21051578.PubMedCrossRefGoogle Scholar
  53. 53.
    Rinaldi Schinkel E, Pettine SM, Adams E, et al. Impact of varying levels of protein intake on protein status indicators after gastric bypass in patients with multiple complications requiring nutritional support. Obes Surg. 2006;16:24–30. PMID: 16417753.PubMedCrossRefGoogle Scholar
  54. 54.
    Moize V, Geliebter A, Gluck ME, et al. Obese patients have inadequate protein intake related to protein intolerance up to 1 year following Roux-en-Y gastric bypass. Obes Surg. 2003;13:23–8. PMID: 12630609.PubMedCrossRefGoogle Scholar
  55. 55.
    Bavaresco M, Paganini S, Lima TP, et al. Nutritional course of patients submitted to bariatric surgery. Obes Surg. 2010;20:716–21. PMID: 18931884.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Asja E. Friedrich
    • 1
  • Antje Damms-Machado
    • 1
  • Tobias Meile
    • 2
  • Nicole Scheuing
    • 1
  • Katrin Stingel
    • 1
  • Maryam Basrai
    • 1
  • Markus A. Küper
    • 2
  • Klaus M. Kramer
    • 3
  • Alfred Königsrainer
    • 2
  • Stephan C. Bischoff
    • 1
  1. 1.Department of Nutritional MedicineUniversity of HohenheimStuttgartGermany
  2. 2.Department of General, Visceral and Transplant SurgeryUniversity of TuebingenTuebingenGermany
  3. 3.Department of General and Visceral SurgeryChirurgische Klinik Muenchen-BogenhausenMunichGermany

Personalised recommendations