Obesity Surgery

, Volume 23, Issue 9, pp 1436–1444 | Cite as

Duodenal–Jejunal Bypass Improves Glucose Metabolism and Adipokine Expression Independently of Weight Loss in a Diabetic Rat Model

  • Chunxiao Hu
  • Guangyong Zhang
  • Dong Sun
  • Haifeng Han
  • Sanyuan HuEmail author
Original Contributions



There is accumulating evidence that adipokines lead to a proinflammatory state, which plays crucial roles in insulin resistance and development of type 2 diabetes mellitus (T2DM). Previous studies demonstrated that weight loss after bariatric surgery is accompanied by a suppression of the proinflammatory state. However, the effect of bariatric surgery on adipokine expression beyond weight loss is still elusive. The aim of this study was to investigate the effect of duodenal–jejunal bypass (DJB) on glucose homeostasis and adipokine expression independently of weight loss.


A T2DM rat model was developed by a high-fat diet and low dose of streptozotocin. Twenty-one diabetic rats and 10 age-matched SD rats were randomly assigned to the DJB group, sham-DJB (S-DJB) group, and control group. For 12 weeks after surgery, their body weight, food intake, glucose homeostasis, lipid parameters, serum adipokine levels, and adipokine gene expression in the mesocolon adipose tissue were measured.


Compared to the S-DJB group, DJB induced significant and sustained glycemic control with improved insulin sensitivity and glucose tolerance independently of weight loss. DJB improved the lipid metabolism by decreasing fasting free fatty acids and triglycerides. Serum leptin and IL-6 significantly decreased 12 weeks after DJB, whereas adiponectin increased and TNF-α remained unchanged. The mRNA expression levels of leptin, TNF-α, and IL-6 decreased, whereas adiponectin increased in the mesocolon adipose tissue.


DJB reduced the proinflammatory adipokines and increased the anti-inflammatory adipokines independently of weight loss, which may contribute to the improvement of insulin sensitivity.


Duodenal–jejunal bypass Type 2 diabetes mellitus Adipokine High-fat diet Streptozotocin 



This work was supported by the National Natural Science Foundation of China (no. 81270888/H0713 and no. 81070642/H0713), Specialized Research Fund for the Doctoral Program of Higher Education (no. 20100131110049), Shandong Provincial Outstanding Medical Academic Professional Program, Natural Science Foundation of Shandong Province grants (no. ZR2012HQ030), and Graduate Independent Innovation Foundation of Shandong University (no.yzc12160). Thanks to Dr. Edward C. Mignot (Shandong University) and EDANZ (a professional language service) for linguistic advice.

Conflict of Interest

The authors have nothing to disclose.


  1. 1.
    Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(7):782. Epub 2001 Dec 13. PMID: 11742409.PubMedCrossRefGoogle Scholar
  2. 2.
    Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43. Epub 2000 Apr 6. PMID: 10766250.PubMedGoogle Scholar
  3. 3.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28. Epub 2005 Apr 20. PMID: 15836891.PubMedCrossRefGoogle Scholar
  4. 4.
    Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes. 2006;55(6):1537–45. Epub 2006 May 29. PMID: 16731815.PubMedCrossRefGoogle Scholar
  5. 5.
    Antuna-Puente B, Feve B, Fellahi S, et al. Obesity, inflammation and insulin resistance: which role for adipokines. Therapie. 2007;62(4):285–92. Epub 2007 Nov 6. PMID: 17983554.PubMedCrossRefGoogle Scholar
  6. 6.
    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9. Epub 2005 May 03. PMID: 15864338.PubMedGoogle Scholar
  7. 7.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801. Epub 2006 Jul 11. PMID: 16823477.PubMedCrossRefGoogle Scholar
  8. 8.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6. Epub 2006 Dec 14. PMID: 17167471.PubMedCrossRefGoogle Scholar
  9. 9.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. Epub 1993 Jan 1. PMID: 7678183.PubMedCrossRefGoogle Scholar
  10. 10.
    Fasshauer M, Klein J, Neumann S, et al. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett. 2001;507(2):142–6. Epub 2001 Oct 26. PMID: 11684087.PubMedCrossRefGoogle Scholar
  11. 11.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. Epub 2004 Oct 13. PMID: 15479938.PubMedCrossRefGoogle Scholar
  12. 12.
    Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 50-2. Epub 1995 Oct 13. PMID: 7677463.PubMedCrossRefGoogle Scholar
  13. 13.
    Habib P, Scrocco JD, Terek M, et al. Effects of bariatric surgery on inflammatory, functional and structural markers of coronary atherosclerosis. Am J Cardiol. 2009;104(9):1251–5. Epub 2009 Nov 1. PMID: 19840571.PubMedCrossRefGoogle Scholar
  14. 14.
    Moschen AR, Molnar C, Geiger S, et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut. 2010;59(9):1259–64. Epub 2010 Sep 01. PMID: 20660075.PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia de la Torre N, Rubio MA, Bordiu E, et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab. 2008;93(11):4276–81. Epub 2008 Aug 21. PMID: 18713823.PubMedCrossRefGoogle Scholar
  16. 16.
    Cancello R, Henegar C, Viguerie N, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86. Epub 2005 Jul 28. PMID: 16046292.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2011;7(5):618–24. Epub 2011 May 07. PMID: 21546319.PubMedCrossRefGoogle Scholar
  18. 18.
    Speck M, Cho YM, Asadi A, et al. Duodenal–jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32. Epub 2011 Feb 10. PMID: 21304061.PubMedCrossRefGoogle Scholar
  19. 19.
    Araujo AC, Bonfleur ML, Balbo SL, et al. Duodenal–jejunal bypass surgery enhances glucose tolerance and beta-cell function in Western diet obese rats. Obes Surg. 2012;22(5):819–26. Epub 2012 Mar 14. PMID: 22411572.PubMedCrossRefGoogle Scholar
  20. 20.
    Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. Epub 2003 Dec 20. PMID: 14685093.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75. Epub 2008 Jun 04. PMID: 18520224.PubMedCrossRefGoogle Scholar
  22. 22.
    Geloneze B, Geloneze SR, Chaim E, et al. Metabolic surgery for non-obese type 2 diabetes incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study. Ann Surg. 2012;256(1):72–8. Epub 2012 Jul. PMID: 22664560.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu SZ, Sun D, Zhang GY, et al. A high-fat diet reverses improvement in glucose tolerance induced by duodenal–jejunal bypass in type 2 diabetic rats. Chin Med J (Engl). 2012;125(5):912–9. Epub 2012 Apr 12. PMID: 22490596.Google Scholar
  24. 24.
    Pacheco D, de Luis DA, Romero A, et al. The effects of duodenal–jejunal exclusion on hormonal regulation of glucose metabolism in Goto–Kakizaki rats. Am J Surg. 2007;194(2):221–4. Epub 2007 Jul 10. PMID: 17618808.PubMedCrossRefGoogle Scholar
  25. 25.
    Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology. 2005;146(4):1745–51. Epub 2004 Dec 31. PMID: 15625244.PubMedCrossRefGoogle Scholar
  26. 26.
    Fried M, Ribaric G, Buchwald JN, et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI < 35 kg/m(2): an integrative review of early studies. Obes Surg. 2010;20(6):776–90. Epub 2010 May 21. PMID: 20333558.PubMedCrossRefGoogle Scholar
  27. 27.
    Geloneze B, Geloneze SR, Fiori C, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal–jejunal exclusion. Obes Surg. 2009;19(8):1077–83. Epub 2009 Jul 17. PMID: 15475464.PubMedCrossRefGoogle Scholar
  28. 28.
    Reis CEG, Alvarez-Leite JI, Bressan J, et al. Role of bariatric-metabolic surgery in the treatment of obese type 2 diabetes with body mass index < 35 kg/m(2): a literature review. Diabetes Technol The. 2012;14(4):365–72. Epub 2012 Apr 02. PMID: 22126155.CrossRefGoogle Scholar
  29. 29.
    Swarbrick MM, Stanhope KL, Austrheim-Smith IT, et al. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008;51(10):1901–11. Epub 2008 Aug 16. PMID: 18704364.PubMedCrossRefGoogle Scholar
  30. 30.
    Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437–46. 46 e1. Epub 2010 Mar 17. PMID: 20226188.PubMedCrossRefGoogle Scholar
  31. 31.
    Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622. Epub 2002 Oct 10. PMID: 12372842.PubMedCrossRefGoogle Scholar
  32. 32.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10. Epub 1997 Jan 01. PMID: 8971073.PubMedCrossRefGoogle Scholar
  33. 33.
    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9. Epub 2006 Oct 25. PMID: 17060767.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee YS, Shin S, Shigihara T, et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes. 2007;56(6):1671–9. Epub 2007 Mar 21. PMID: 17369525.PubMedCrossRefGoogle Scholar
  35. 35.
    Cases JA, Gabriely I, Ma XH, et al. Physiological increase in plasma leptin markedly inhibits insulin secretion in vivo. Diabetes. 2001;50(2):348–52. Epub 2001 Mar 29. PMID: 11272146.PubMedCrossRefGoogle Scholar
  36. 36.
    Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5. Epub 1996 Feb 01. PMID: 8532024.PubMedCrossRefGoogle Scholar
  37. 37.
    Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;5(86):1930–5. Epub 2001 May 10. PMID: 11344187.CrossRefGoogle Scholar
  38. 38.
    Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96(5):1723–32. Epub 2000 Sep 01. PMID: 10961870.PubMedGoogle Scholar
  39. 39.
    Degawa-Yamauchi M, Moss KA, Bovenkerk JE, et al. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res. 2005;13(4):662–9. Epub 2005 Apr. PMID: 15897474.PubMedCrossRefGoogle Scholar
  40. 40.
    Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196–200. Epub 1997 Dec. PMID: 9398739.PubMedCrossRefGoogle Scholar
  41. 41.
    Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278(46):45777–84. Epub 2003 Nov 14. PMID: 12952969.PubMedCrossRefGoogle Scholar
  42. 42.
    Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6. Epub 2002 Nov 21. PMID: 12447443.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang H, Wang Y, Zhang J, et al. Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arterioscler Thromb Vasc Biol. 2011;31(9):2063–9. Epub 2011 Sep. PMID: 21680898.PubMedCrossRefGoogle Scholar
  44. 44.
    Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5. Epub 2012 Apr 25. PMID: 22527592.PubMedCrossRefGoogle Scholar
  45. 45.
    Curat CA, Miranville A, Sengenes C, et al. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004;53(5):1285–92. Epub 2004 May. PMID: 15111498.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee HC, Kim MK, Kwon HS, et al. Early changes in incretin secretion after laparoscopic duodenal–jejunal bypass surgery in type 2 diabetic patients. Obes Surg. 2010;20(11):1530–5. Epub 2010 Aug 31. PMID: 20803098.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012;55(9):2456–68. Epub 2012 Jun 23. PMID: 22722451.PubMedCrossRefGoogle Scholar
  48. 48.
    Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285(3):E527–33. Epub 2003 May 09. PMID: 12736161.PubMedGoogle Scholar
  49. 49.
    Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40(1):185–94. Epub 2004 Jul 09. PMID: 15239102.PubMedCrossRefGoogle Scholar
  50. 50.
    Gastaldelli A. Abdominal fat: does it predict the development of type 2 diabetes? Am J Clin Nutr. 2008;87(5):1118–9. Epub 2008 May 13.PMID: 18469227.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chunxiao Hu
    • 1
  • Guangyong Zhang
    • 1
  • Dong Sun
    • 1
  • Haifeng Han
    • 1
  • Sanyuan Hu
    • 1
    Email author
  1. 1.Department of General SurgeryQilu Hospital of Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations