Obesity Surgery

, Volume 23, Issue 9, pp 1361–1369

Reduction of Intestinal Electrogenic Glucose Absorption After Duodenojejunal Bypass in a Mouse Model

  • Sheng Yan
  • Fei Sun
  • Zhiwei Li
  • Jie Xiang
  • Yuan Ding
  • Zhongjie Lu
  • Yang Tian
  • Hui Chen
  • Jinhua Zhang
  • Yan Wang
  • Penghong Song
  • Lin Zhou
  • Shusen Zheng
Original Contributions

Abstract

Background

The role of intestinal glucose absorption in reducing glycemic levels after duodenojejunal bypass (DJB) is unclear. We hypothesized that DJB surgery decreases intestinal electrogenic glucose absorption by sodium glucose co-transporter 1 (SGLT1), leading to decreased glucose absorption and reduced blood glucose. Six groups of C57/BL6 mice were studied (n = 6 each) 2 weeks, 1 month, and 2 months after DJB or sham surgery.

Methods

Daily weight and food intake were measured for 1 month and an oral glucose tolerance test was performed 2 months after surgery. Electrogenic glucose absorption was quantified in an Ussing chamber according to the sodium-dependent increase of short-circuit current (Isc). Intestinal morphology was assessed by hematoxylin and eosin staining. Expression of SGLT1 was determined by quantitative PCR and Western blotting.

Results

The DJB mice lost weight compared with the sham group and exhibited significant adaptive changes, with increased villus height, crypt depth, and villus surface area. Oral glucose absorption was significantly reduced in the DJB mice compared with the sham group. Glucose-induced Isc was significantly lower in the DJB mice than in the sham mice 1 and 2 months after surgery, indicating that SGLT1 activity was reduced after DJB. Transcript levels and protein abundance of SGLT1 after DJB were also decreased compared with the sham group.

Conclusions

DJB surgery reduced intestinal glucose absorption by reducing the activity and expression of the glucose transporter SGLT1, which represents a potential therapeutic target for patients with diabetes.

Keywords

Duodenojejunal bypass Bariatric surgery SGLT1 Ussing chamber Glucose absorption 

References

  1. 1.
    Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21. PMID: 22079683.PubMedCrossRefGoogle Scholar
  2. 2.
    Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40. PMID: 21705069.PubMedCrossRefGoogle Scholar
  3. 3.
    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. PMID: 22449319.PubMedCrossRefGoogle Scholar
  4. 4.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85. PMID: 22449317.PubMedCrossRefGoogle Scholar
  5. 5.
    Keating CL, Dixon JB, Moodie ML, et al. Cost-efficacy of surgically induced weight loss for the management of type 2 diabetes: a randomized controlled trial. Diabetes Care. 2009;32(4):580–4. PMID: 19171726.PubMedCrossRefGoogle Scholar
  6. 6.
    Friedman MN, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet. 1955;100(2):201–4. PMID: 13238177.PubMedGoogle Scholar
  7. 7.
    Michalakis K, le Roux C. Gut hormones and leptin: impact on energy control and changes after bariatric surgery—what the future holds. Obes Surg. 2012;22(10):1648–57. PMID: 22692670.PubMedCrossRefGoogle Scholar
  8. 8.
    Bosello O, Armellini F, Pelloso M, et al. Glucose tolerance in jejunoileal bypass for morbid obesity: a fifteen month follow-up. Diabete Metab. 1978;4(3):159–62. PMID: 710676.PubMedGoogle Scholar
  9. 9.
    Ackerman NB. Observations on the improvements in carbohydrate metabolism in diabetic and other morbidly obese patients after jejunoileal bypass. Surg, Gynecol Obstet. 1981;152(5):581–6. PMID: 7013122.Google Scholar
  10. 10.
    Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. PMID: 14685093.PubMedCrossRefGoogle Scholar
  11. 11.
    Isbell JM, Tamboli RA, Hansen EN, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42. PMID: 20368410.PubMedCrossRefGoogle Scholar
  12. 12.
    Stearns AT, Balakrishnan A, Tavakkolizadeh A. Impact of Roux-en-Y gastric bypass surgery on rat intestinal glucose transport. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G950–7. PMID: 20501442.PubMedCrossRefGoogle Scholar
  13. 13.
    Gorboulev V, Schurmann A, Vallon V, et al. Na(+)-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61(1):187–96. PMID: 22124465.PubMedCrossRefGoogle Scholar
  14. 14.
    Dyer J, Wood IS, Palejwala A, et al. Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol. 2002;282(2):G241–8. PMID: 11804845.PubMedGoogle Scholar
  15. 15.
    Lan Z, Zassoko R, Liu W, et al. Development of techniques for gastrojejunal bypass surgery in obese mice. Microsurgery. 2010;30(4):289–95. PMID: 20049916.PubMedGoogle Scholar
  16. 16.
    Liu W, Zassoko R, Mele T, et al. Establishment of duodenojejunal bypass surgery in mice: a model designed for diabetic research. Microsurgery. 2008;28(3):197–202. PMID: 18286660.PubMedCrossRefGoogle Scholar
  17. 17.
    Woods M, Lan Z, Li J, et al. Antidiabetic effects of duodenojejunal bypass in an experimental model of diabetes induced by a high-fat diet. Br J Surg. 2011;98(5):686–96. PMID: 21381002.PubMedCrossRefGoogle Scholar
  18. 18.
    Clarke LL. A guide to Ussing chamber studies of mouse intestine. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1151–66. PMID: 19342508.PubMedCrossRefGoogle Scholar
  19. 19.
    Artunc F, Rexhepaj R, Volkl H, et al. Impaired intestinal and renal glucose transport in PDK-1 hypomorphic mice. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1533–8. PMID: 16741145.PubMedCrossRefGoogle Scholar
  20. 20.
    Rexhepaj R, Rotte A, Gu S, et al. Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport. Pflugers Arch. 2011;461(5):527–36. PMID: 21476133.PubMedCrossRefGoogle Scholar
  21. 21.
    Ray EC, Avissar NE, Sax HC. Methods used to study intestinal nutrient transport: past and present. J Surg Res. 2002;108(1):180–90. PMID: 12472108.PubMedCrossRefGoogle Scholar
  22. 22.
    Whang EE, Dunn JC, Joffe H, et al. Enterocyte functional adaptation following intestinal resection. J Surg Res. 1996;60(2):370–4. PMID: 8598671.PubMedCrossRefGoogle Scholar
  23. 23.
    Rexhepaj R, Alesutan I, Gu S, et al. SGK1-dependent stimulation of intestinal SGLT1 activity by vitamin D. Pflugers Arch. 2011;462(3):489–94. PMID: 21735060.PubMedCrossRefGoogle Scholar
  24. 24.
    Nasir O, Artunc F, Wang K, et al. Downregulation of mouse intestinal Na(+)-coupled glucose transporter SGLT1 by gum arabic (Acacia senegal). Cell Physiol Biochem. 2010;25(2-3):203–10. PMID: 20110681.PubMedCrossRefGoogle Scholar
  25. 25.
    Herrmann J, Schroder B, Klinger S, et al. Segmental diversity of electrogenic glucose transport characteristics in the small intestines of weaned pigs. Comp Biochem Physiol A Mol Integr Physiol. 2012;163(1):161–9. PMID: 22683689.PubMedCrossRefGoogle Scholar
  26. 26.
    Stearns AT, Balakrishnan A, Radmanesh A, et al. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci. 2012;57(5):1281–90. Epub 2011/12/06. PMID: 22138962.PubMedCrossRefGoogle Scholar
  27. 27.
    Hyland NP, Rybicka JM, Ho W, et al. Adaptation of intestinal secretomotor function and nutrient absorption in response to diet-induced obesity. Neurogastroenterol Motil. 2010;22(6):e602–71. PMID: 20426798.CrossRefGoogle Scholar
  28. 28.
    Balen D, Ljubojevic M, Breljak D, et al. Revised immunolocalization of the Na+- d-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Physiol Cell Physiol. 2008;295(2):C475–89. PMID: 18524944.PubMedCrossRefGoogle Scholar
  29. 29.
    Fatima J, Iqbal CW, Houghton SG, et al. Hexose transporter expression and function in mouse small intestine: role of diurnal rhythm. J Gastrointest Surg. 2009;13(4):634–41. PMID: 19082670.PubMedCrossRefGoogle Scholar
  30. 30.
    Houghton SG, Iqbal CW, Duenes JA, et al. Coordinated, diurnal hexose transporter expression in rat small bowel: implications for small bowel resection. Surgery. 2008;143(1):79–93. PMID: 18154936.PubMedCrossRefGoogle Scholar
  31. 31.
    Castaneda-Sceppa C, Castaneda F. Sodium-dependent glucose transporter protein as a potential therapeutic target for improving glycemic control in diabetes. Nutr Rev. 2011;69(12):720–9. PMID: 22133196.PubMedCrossRefGoogle Scholar
  32. 32.
    Los EL, Wolters H, Stellaard F, et al. Intestinal capacity to digest and absorb carbohydrates is maintained in a rat model of cholestasis. Am J Physiol Gastrointest Liver Physiol. 2007;293(3):G615–22. PMID: 17627970.PubMedCrossRefGoogle Scholar
  33. 33.
    Hirsh AJ, Cheeseman CI. Cholecystokinin decreases intestinal hexose absorption by a parallel reduction in SGLT1 abundance in the brush-border membrane. J Biol Chem. 1998;273(23):14545–9. PMID: 9603969.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sheng Yan
    • 1
  • Fei Sun
    • 1
  • Zhiwei Li
    • 1
  • Jie Xiang
    • 1
  • Yuan Ding
    • 1
  • Zhongjie Lu
    • 1
  • Yang Tian
    • 1
  • Hui Chen
    • 1
  • Jinhua Zhang
    • 1
  • Yan Wang
    • 1
  • Penghong Song
    • 1
  • Lin Zhou
    • 1
  • Shusen Zheng
    • 1
  1. 1.Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery; First Affiliated Hospital, School of Medicine; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ TransplantationZhejiang UniversityHangzhouChina

Personalised recommendations