Obesity Surgery

, Volume 23, Issue 7, pp 920–930 | Cite as

Roux en Y Gastric Bypass Increases Ethanol Intake in the Rat

  • Jon F. Davis
  • Andrea L. Tracy
  • Jennifer D. Schurdak
  • Irwin J. Magrisso
  • Bernadette E. Grayson
  • Randy J. Seeley
  • Stephen C. Benoit
Animal Research

Abstract

Roux en Y gastric bypass (RYGB) surgery is currently the most effective therapy employed to treat obesity and its associated complications. In addition to weight loss and resolution of metabolic syndromes, such as diabetes, the RYGB procedure has been reported to increase alcohol consumption in humans. Using an outbred rodent model, we demonstrate that RYGB increases postsurgical ethanol consumption, that this effect cannot be explained solely by postsurgical weight loss and that it is independent of presurgical body weight or dietary composition. Altered ethanol metabolism and postsurgical shifts in release of ghrelin were also unable to account for changes in alcohol intake. Further investigation of the potential physiological factors underlying this behavioral effect identified altered patterns of gene expression in brain regions associated with reward following RYGB surgery. These findings have important clinical implications as they demonstrate that RYGB surgery leads directly to increased alcohol intake in otherwise alcohol nonpreferring rat and induces neurobiological changes in brain circuits that mediate a variety of appetitive behaviors.

Keywords

Roux en Y gastric bypass Ethanol Orexin Dopamine 

References

  1. 1.
    Orci L, Chilcott M, Huber O. Short versus long Roux-limb length in Roux en gastric bypass surgery for the treatment of morbid and super obesity: a systematic review of the literature. Obes Surg. 2011;21(6):797–804.PubMedCrossRefGoogle Scholar
  2. 2.
    Ertelt TW, Mitchell JE, et al. Alcohol abuse and dependence before and after bariatric surgery: a review of the literature and report of a new data set. Surg Obes Relat Dis. 2008;4(5):647–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Kalarchian MA, Marcus MD, et al. Psychiatric disorders among bariatric surgery candidates: relationship to obesity and functional health status. Am J Psychiatry. 2007;164(2):328–34. quiz 374.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr KD. Augmenting of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav. 2002;76(3):353–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Engleman EA, Ding ZM, et al. Ethanol is self-administered into the nucleus accumbens shell, but not the core: evidence of genetic sensitivity. Alcohol Clin Exp Res. 2009;33(12):2162–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Lawrence AJ, Cowen MS, et al. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol. 2006;148(6):752–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Dunn JP, Cowan RL, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Volkow N, Wang GJ, Telang F, et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci. 2007;27(46):12700–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Cummings DE, Weigle DS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Shin AC, Zheng H, Townsend RL, et al. Meal-induced hormone responses in a rat model of Roux en Y gastric bypass surgery. Endocrinology. 2010;151(4):1588–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Dickson SL, Egecioglu E, Landgren S, et al. The role of the central ghrelin system in reward from food and chemical drugs. Mol Cell Endocrinol. 2011;340(1):80–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Jerlhag E, Egecioglu E, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106(27):11318–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Suzuki J, Haimovici F, Chang G. Alcohol use disorders after bariatric surgery. Obes Surge. 2012;22(2):201–7.CrossRefGoogle Scholar
  14. 14.
    Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Zheng H, Shin AC, et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1273–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Carroll ME, France CP, Meisch RA. Food deprivation increases oral and intravenous drug intake in rats. Science. 1979;20(205):319–21.CrossRefGoogle Scholar
  17. 17.
    Klockhoff H, Naslund I, et al. Faster absorption of ethanol and higher peak concentration in women after gastric bypass surgery. Br J Clin Pharmacol. 2002;54(6):587–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Woodward GA, Downey J, Hernandez-Boussard T, et al. Impaired alcohol metabolism after gastric bypass surgery: a case-cross over trial. J Am Coll Surg. 2011;212(2):209–14.CrossRefGoogle Scholar
  19. 19.
    Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux en Y gastric bypass. Int J Obes. 2009;33(7):786–95.CrossRefGoogle Scholar
  20. 20.
    Martins C, Kjelstrup L, Mostad IL, et al. Impact of sustained weight loss achieved through Roux en Y gastric bypass or a lifestyle intervention on ghrelin, obestatin and ghrelin/obestatin ratio in morbidly obese patients. Obes Surg. 2011;21(6):751–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Boileau I, Assaad J-M, et al. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse. 2003;49(4):226–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Koob GF, Roberts AJ, Schulteis G, et al. Neurocircuitry targets in ethanol reward and dependence. Alcohol Clin Exp Res. 1998;22:3–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Thanos PK, Taintor NB, et al. DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking. Alcohol Clin Exp Res. 2004;28(5):720–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Narita M, Nagumo Y, et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci. 2006;26(2):398–405.PubMedCrossRefGoogle Scholar
  25. 25.
    Cabeza de Vaca S, Carr KD. Food restriction enhances the central rewarding effects of abused drugs. J Neurosci. 1998;18(18):7502–10.PubMedGoogle Scholar
  26. 26.
    Tschoep ML, Smiley DL, Heiman M. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13.CrossRefGoogle Scholar
  27. 27.
    Barazzoni R, Zanetti M, Nagliati C, et al. Gastric bypass does not normalize obesity-related changes in ghrelin profile and leads to higher acylated ghrelin fraction. Obesity. 2012. doi:10.1038/oby.2012.149.
  28. 28.
    Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013. doi:10.1053/j.gastro.2012.09.009.
  29. 29.
    Kurose T, Ueta Y, Yamamoto Y, et al. Effects of restricted feeding on the activity of hypothalamic orexin (OX)-A containing neurons and OX2 receptor mRNA in the paraventricular nucleus of rats. Regul Pept. 2002;104(1–3):141–5.Google Scholar
  30. 30.
    Schneider ER, Rada P, Darby RD, et al. Orexigenic peptides and alcohol intake: differential effects of orexin, galanin and ghrelin. Alcohol Clin Exp Res. 2007;31(11):1858–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Jupp B, Krstew E, Dezsi G, et al. Discrete cue-conditioned alcohol seeking after protracted abstinence: pattern of neuronal activation and involvement of orexin R1 receptors. Br J Pharmacol. 2011;162(4):880–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Aston-Jones G, Smith RJ, Sartor GC, et al. Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res. 2010;1341C:74.CrossRefGoogle Scholar
  33. 33.
    Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacol. 2011;214(4):805–18.CrossRefGoogle Scholar
  34. 34.
    Schoblock JR, Welty N, Alusio L, et al. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference and reinstatement. Psychopharmacol. 2011;215(1):191–203.CrossRefGoogle Scholar
  35. 35.
    Steele KE, Prokopowicz GP, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111:379–87.PubMedCrossRefGoogle Scholar
  37. 37.
    Volkow ND, Wang GJ, Fowler JS, et al. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry. 1999;156(9):1440–3.PubMedGoogle Scholar
  38. 38.
    Heinz A, Siessmeier T, Wrase J, et al. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(10):1783–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Bulwa ZB, Sharlin JA, Clark PJ, et al. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol. 2011;45(7):631–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Volkow ND, Wang GJ, Maynard L, et al. Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res. 2002;116(3):163–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Volkow N, Wang GJ, Begleiter H, et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry. 2006;63(9):999–1008.PubMedCrossRefGoogle Scholar
  42. 42.
    Volkow ND, Wang GJ, Fowler JS, et al. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathaology. Phils Trans R Soc Lond B Biol Sci. 2008;363(1507):3191–200.CrossRefGoogle Scholar
  43. 43.
    Hajnal A, Norgren R. Repeated access to sucrose augments dopamine turnover in the nucleus accumbens. Neuroreport. 2002;13:2213–6. doi:10.1097/00001756-200212030-00010.PubMedCrossRefGoogle Scholar
  44. 44.
    Park TH, Carr KD. Neuroanatomical pattern of fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats. Brain Res. 1998;805(1–2):169–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Geiger BM, Haburcak M, Avena NM, et al. Deficits of mesolimbic dopamine transmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Rada P, Bocarsly ME, Barson JR, et al. Reduced accumbens dopamine in Sprague–Dawley rats prone to overeating a fat-rich diet. Physiol Behav. 2009;101(3):394–400.CrossRefGoogle Scholar
  47. 47.
    Bello EP, Mateo Y, Gelman DM, et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci. 2011;14(8):1033–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Wiederman MW, Pryor T. Substance use among women with eating disorders. Int J Eat Disord. 1996;20:163–8. doi:10.1002/(SICI)1098-108X(199609)20:2_163::AID-EAT6_3.0.CO;2-E.PubMedCrossRefGoogle Scholar
  49. 49.
    Puhl M, Cason A, Wojnicki F, et al. A history of bingeing on fat enhances cocaine seeking and taking. Behav Neurosci. 2011;125(6):930–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Bocchieri LE, Meana M, Fisher BL. A review of psychosocial outcomes of surgery for morbid obesity. J Psychosom Res. 2002;52(3):155–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Herpertz S, Kielmann R, Wolf A, et al. Does obesity surgery improve psychosocial functioning? A systematic review. Int J Obesity. 2003;27(11):1300–14.CrossRefGoogle Scholar
  52. 52.
    van Hout GC, Boekestein P, Fortuin FA, et al. Psychosocial functioning following bariatric surgery. Obes Surg. 2006;16(6):787–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Sarwer D, Fabricatore A, Jones-Corneille L, et al. Psychological issues following bariatric surgery. Primary Psychiatry. 2008;8:50–5.Google Scholar
  54. 54.
    Abbey A, Smith M. Psychosocial factors that influence American adults alcohol consumption. Drug Alcohol Abuse Rev. 1992;3:1–31.Google Scholar
  55. 55.
    Koob GF, Sanna P, Bloom F. Neuroscience of addiction. Neuron. 1998;21:467–76.PubMedCrossRefGoogle Scholar
  56. 56.
    Lawrence AJ. Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Res. 2010;1314:124–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Hodge CW, Samson HH, Chappelle AM. Alcohol self-administration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res. 1997;21:1083–91.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jon F. Davis
    • 1
    • 4
  • Andrea L. Tracy
    • 3
  • Jennifer D. Schurdak
    • 1
  • Irwin J. Magrisso
    • 2
  • Bernadette E. Grayson
    • 2
  • Randy J. Seeley
    • 2
  • Stephen C. Benoit
    • 1
  1. 1.Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases InstituteUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Internal Medicine, Metabolic Diseases InstituteUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of PsychologyGrinnell CollegeGrinnellUSA
  4. 4.Metabolic Diseases InstituteUniversity of CincinnatiCincinnatiUSA

Personalised recommendations