Obesity Surgery

, Volume 22, Issue 9, pp 1481–1490

Short-Term Effects of Sleeve Gastrectomy and Caloric Restriction on Blood Pressure in Diet-Induced Obese Rats

  • Amaia Rodríguez
  • Sara Becerril
  • Víctor Valentí
  • Rafael Moncada
  • Leire Méndez-Giménez
  • Beatriz Ramírez
  • Andoni Lancha
  • Marina Martín
  • María A. Burrell
  • Victoria Catalán
  • Javier Gómez-Ambrosi
  • Gema Frühbeck
Animal Research



Sleeve gastrectomy constitutes an effective surgical procedure for the treatment of morbid obesity. The aim of the present study was to establish the effects of sleeve gastrectomy and caloric restriction on weight loss and cardiovascular parameters in diet-induced obese (DIO) rats.


Male Wistar DIO rats were subjected to surgical interventions (n = 30) (sham operation, sleeve gastrectomy, or pair-fed to the amount of food eaten by sleeve-gastrectomized animals and compared to lean control rats) or dietary interventions (n = 40) (fed ad libitum a normal diet (ND) or a high-fat diet or an ND with a caloric restriction of 25 %). Systolic blood pressure (SBP), diastolic blood pressure, and mean blood pressure values and heart rate (HR) were recorded in conscious, resting animals by noninvasive tail-cuff plethysmography before and 3 weeks after surgical or dietary interventions.


Both sleeve gastrectomy and caloric restriction induced a reduction in body weight, whole-body adiposity, and serum leptin together with an increased excess weight loss in DIO rats. Sleeve gastrectomy was further associated with an improvement in insulin resistance and the lipid profile, as well as with a reduction in serum ghrelin levels. A decrease in HR and heart weight was observed in caloric-restricted groups. Sleeve-gastrectomized rats not only exhibited a reduction in HR (∆HR = −45 ± 19 bpm) but also in SBP values (∆SBP = −22 ± 10 mmHg) compared to the DIO rats (∆SBP = 14 ± 8 mmHg).


Our findings provide evidence that the beneficial effects of sleeve gastrectomy on blood pressure values are beyond weight loss in rats with diet-induced obesity.


Experimental models of bariatric surgery Sleeve gastrectomy Caloric restriction Blood pressure Diet-induced obesity 



Cardiovascular disease


Diastolic blood pressure


Excess weight loss


Heart rate


Mean blood pressure


Systolic blood pressure


  1. 1.
    Eckel RH, Krauss RM. American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee. Circulation. 1998;97:2099–100.PubMedCrossRefGoogle Scholar
  2. 2.
    Smith Jr SC, Blair SN, Bonow RO, et al. AHA/ACC guidelines for preventing heart attack and death in patients with atherosclerotic cardiovascular disease: 2001 update. A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. J Am Coll Cardiol. 2001;38:1581–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. Lancet. 2010;375:181–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Rodríguez A, Catalán V, Gómez-Ambrosi J, et al. Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr Pharm Des. 2007;13:2169–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Neter JE, Stam BE, Kok FJ, et al. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Goodpaster BH, Delany JP, Otto AD, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304:1795–802.PubMedCrossRefGoogle Scholar
  7. 7.
    Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.PubMedCrossRefGoogle Scholar
  8. 8.
    Sjöström L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Hofsø D, Nordstrand N, Johnson LK, et al. Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Endocrinol. 2010;163:735–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Deitel M, Crosby RD, Gagner M. The First International Consensus Summit for Sleeve Gastrectomy (SG), New York City, October 25–27, 2007. Obes Surg. 2008;18:487–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Gagner M, Deitel M, Kalberer TL, et al. The second international consensus summit for sleeve gastrectomy, March 19–21, 2009. Surg Obes Relat Dis. 2009;5:476–85.PubMedCrossRefGoogle Scholar
  13. 13.
    de Bona Castelan J, Bettiol J, d’Acampora AJ, et al. Sleeve gastrectomy model in Wistar rats. Obes Surg. 2007;17:957–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Valentí V, Martín M, Ramírez B, et al. Sleeve gastrectomy induces weight loss in diet-induced obese rats even if high-fat feeding is continued. Obes Surg. 2011;21:1438–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141:950–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodríguez A, Becerril S, Valentí V, et al. Sleeve gastrectomy reduces blood pressure in obese (fa/fa) Zucker rats. Obes Surg. 2012;22:309–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46:143–72.PubMedGoogle Scholar
  18. 18.
    Mutch DM, Clément K. Unraveling the genetics of human obesity. PLoS Genet. 2006;2:e188.PubMedCrossRefGoogle Scholar
  19. 19.
    Frühbeck G, Alonso R, Marzo F, et al. A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal Biochem. 1995;225:206–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, et al. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol. 2002;128:149–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Martín M, Burrell MA, Gómez-Ambrosi J, et al. Short- and long-term changes in gastric morphology and histopathology following sleeve gastrectomy in diet-induced obese rats. Obes Surg. 2012;22:634–40.CrossRefGoogle Scholar
  22. 22.
    Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediators Inflamm. 2010;2010:105489.PubMedCrossRefGoogle Scholar
  23. 23.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85:2402–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Hill JO, Melanson EL, Wyatt HT. Dietary fat intake and regulation of energy balance: implications for obesity. J Nutr. 2000;130:284S–8S.PubMedGoogle Scholar
  26. 26.
    Wilson-Pérez HE, Chambers AP, Sandoval DA, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes (Lond). 2012. doi:10.1038/ijo.2012.18.
  27. 27.
    Patrikakos P, Toutouzas KG, Perrea D, et al. A surgical rat model of sleeve gastrectomy with staple technique: long-term weight loss results. Obes Surg. 2009;19:1586–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Stefater MA, Perez-Tilve D, Chambers AP, et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138:2426–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Frühbeck G, Díez Caballero A, Gil MJ. Fundus functionality and ghrelin concentrations after bariatric surgery. N Engl J Med. 2004;350:308–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Langer FB, Reza Hoda MA, Bohdjalian A, et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg. 2005;15:1024–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Rahmouni K, Correia ML, Haynes WG, et al. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45:9–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Benaiges D, Goday A, Ramon JM, et al. Laparoscopic sleeve gastrectomy and laparoscopic gastric bypass are equally effective for reduction of cardiovascular risk in severely obese patients at one year of follow-up. Surg Obes Relat Dis. 2011;7:575–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Association of plasma acylated ghrelin with blood pressure and left ventricular mass in patients with metabolic syndrome. J Hypertens. 2010;28:560–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88:389–419.PubMedCrossRefGoogle Scholar
  36. 36.
    Wasmund SL, Owan T, Yanowitz FG, et al. Improved heart rate recovery after marked weight loss induced by gastric bypass surgery: two-year follow up in the Utah Obesity Study. Hear Rhythm. 2010;8:84–90.CrossRefGoogle Scholar
  37. 37.
    Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest. 2011;121:2087–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Rodríguez A, Frühbeck G, Gómez-Ambrosi J, et al. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction is blunted in spontaneously hypertensive rats. J Hypertens. 2006;24:1589–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Rodríguez A, Fortuño A, Gómez-Ambrosi J, et al. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology. 2007;148:324–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Beltowski J, Wojcicka G, Jamroz-Wisniewska A, et al. Chronic hyperleptinemia induces resistance to acute natriuretic and NO-mimetic effects of leptin. Peptides. 2010;31:155–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Nickola MW, Wold LE, Colligan PB, et al. Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension. 2000;36:501–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Rajapurohitam V, Javadov S, Purdham DM, et al. An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1. J Mol Cell Cardiol. 2006;41:265–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2012

Authors and Affiliations

  • Amaia Rodríguez
    • 1
    • 6
  • Sara Becerril
    • 1
    • 6
  • Víctor Valentí
    • 2
    • 6
  • Rafael Moncada
    • 3
  • Leire Méndez-Giménez
    • 1
  • Beatriz Ramírez
    • 1
    • 6
  • Andoni Lancha
    • 1
  • Marina Martín
    • 5
  • María A. Burrell
    • 5
    • 6
  • Victoria Catalán
    • 1
    • 6
  • Javier Gómez-Ambrosi
    • 1
    • 6
  • Gema Frühbeck
    • 1
    • 4
    • 6
  1. 1.Metabolic Research LaboratoryClínica Universidad de NavarraPamplonaSpain
  2. 2.Department of SurgeryClínica Universidad de NavarraPamplonaSpain
  3. 3.Department of AnesthesiaClínica Universidad de NavarraPamplonaSpain
  4. 4.Department of Endocrinology and NutritionClínica Universidad de NavarraPamplonaSpain
  5. 5.Department of Histology and PathologyUniversity of NavarraPamplonaSpain
  6. 6.CIBER Fisiopatología de la Obesidad y NutriciónInstituto de Salud Carlos IIIPamplonaSpain

Personalised recommendations