Obesity Surgery

, Volume 22, Issue 1, pp 167–176 | Cite as

Type 2 Diabetes Mellitus: A Possible Surgically Reversible Intestinal Dysfunction

  • Priscila C. Sala
  • Raquel S. Torrinhas
  • Steven B. Heymsfield
  • Dan L. Waitzberg
Review

Abstract

Type 2 diabetes mellitus (T2DM) is a global public health problem often associated with obesity. Bariatric surgery is effective for treating serious obesity, and techniques involving intestinal bypass have metabolic benefits, such as complete and early remission of T2DM. We present a literature review of the possible mechanisms of early normalization of glycemic homeostasis after bariatric surgery, including intestinal gluconeogenesis, increased antidiabetogenic signals from L cells located in the distal small intestine, and impaired secretion of diabetogenic signals in the upper part of the small intestine. Adding to these potential mechanisms, unknown factors that regulate insulin sensitivity may be involved and altered by bariatric surgery. This review discusses the various hypotheses about the mechanisms of glycemic control after bariatric surgery involving intestinal bypass. Further research is essential to better understand these mechanisms and to identify potential new mechanisms that might help in developing less invasive and safer alternatives for the treatment of T2DM and reveal novel pharmaceutical targets for glycemic control.

Keywords

Type 2 diabetes Bariatric surgery Small intestine 

References

  1. 1.
    World Health Organization. Facts sheet on diabetes, obesity and overweight. Geneva: World Health Organization; 2006.Google Scholar
  2. 2.
    Wild S, Roglic G, Green A, et al. Global prevalence of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Bottino R, Trucco M. Multifaceted therapeutic approaches for a multigenic disease. Diabetes. 2005;54:79–86.CrossRefGoogle Scholar
  4. 4.
    Wilson JB, Pories WJ. Durable remission of diabetes after bariatric surgery: what is the underlying pathway? Insulin. 2010;5:46–55.CrossRefGoogle Scholar
  5. 5.
    Masharami U, Karam JH, et al. Hôrmonios pancreáticos e diabetes melito. In: Greenspan FS, Gardner DG, editors. Endocrinologia Básica e Clínica. New York: McGraw-Hill; 2006. p. 541–55.Google Scholar
  6. 6.
    Sartorelli DS, Franco LJ. Trends in diabetes mellitus in Brazil: the role of the nutritional transition. Cad Saúde Pública. 2003;19:29–36.CrossRefGoogle Scholar
  7. 7.
    Canadian Diabetes Association. Clinical practice guidelines for the prevention and management of diabetes in Canada. Toronto: Canadian Diabetes Association; 2008. p. 77.Google Scholar
  8. 8.
    Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab. 1996;22:122–31.PubMedGoogle Scholar
  9. 9.
    Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab. 2009;35:518–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Annals of Surg. 2004;239:1–11.CrossRefGoogle Scholar
  12. 12.
    Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89:2608–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Annals of Surg. 2003;238:467–84.Google Scholar
  14. 14.
    Pories WJ, Swanson MS, McDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Annals of Surg. 1995;222:339–50.CrossRefGoogle Scholar
  15. 15.
    Guidone C, Manco M, Valera-Mora E, et al. Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes. 2006;55:2025–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Mari A, Manco M, Guidone C, et al. Restoration of normal glucose tolerance in severely obese patients after bilio-pancreatic diversion: role of insulin sensitivity and beta cell function. Diabetol. 2006;49:2136–43.CrossRefGoogle Scholar
  17. 17.
    Pories WJ, Caro JF, Flickinger EG, et al. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville Gastric Bypass. Annals of Surg. 1987;206:316–23.CrossRefGoogle Scholar
  18. 18.
    Salinari S, Bertuzzi A, Asnaghi S, et al. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care. 2009;32:375–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Annals of Surg. 2004;240:236–42.CrossRefGoogle Scholar
  20. 20.
    Briatore L, Salani B, Andraghetti G, et al. Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion. Obes. 2008;16:77–81.CrossRefGoogle Scholar
  21. 21.
    American Diabetes Association. Standards of medical care in diabetes—2009. Diabetes Care. 2009;32:13–61.CrossRefGoogle Scholar
  22. 22.
    Scheen AJ, De Flines J, De Roover A, et al. Bariatric surgery in patients with type 2 diabetes: benefits, risks, indications and perspectives. Diabetes Metab. 2009;35:537–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Crookes PF. Surgical treatment of morbid obesity. Annu Rev Med. 2006;57:243–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93:89–96.CrossRefGoogle Scholar
  25. 25.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19:1605–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Mason EE, Doherty C, Cullen JJ, et al. Vertical gastroplasty: evolution of vertical banded gastroplasty. World J Surg. 1998;22:919–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubino F, Schauer PR, Kaplan LM, et al. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.PubMedCrossRefGoogle Scholar
  28. 28.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.PubMedCrossRefGoogle Scholar
  29. 29.
    Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 2008;3:290–6.CrossRefGoogle Scholar
  30. 30.
    Scopinaro N, Marinari GM, Camerini GB, et al. Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study. Diabetes Care. 2005;28:2406–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Hall TC, Pellen MG, Sedman PC, et al. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20:1245–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Kashyap SR, Gatmaitan P, Brethauer S, et al. Bariatric surgery for type 2 diabetes: weighing the impact for obese patients. Cleve Clin J Med. 2010;77:468–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Polonsky KS, Gumbiner B, Ostrega D, et al. Alterations in immunoreactive proinsulin and insulin clearance induced by weight loss in NIDDM. Diabetes. 1994;43:871–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Gumbiner B, Van Cauter E, Beltz WF, et al. Abnormalities of insulin pulsatility and glucose oscillations during meals in obese noninsulin-dependent diabetic patients: effects of weight reduction. J Clin Endocrinol Metab. 1196;81:2061–8.CrossRefGoogle Scholar
  35. 35.
    Sugerman HJ, Wolfe LG, Sica DA. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Annals of Surg. 2003;237:751–8.Google Scholar
  36. 36.
    Dixon JB. Obesity and diabetes: the impact of bariatric surgery on type-2 diabetes. World J Surg. 2009;33:2014–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Parikh M, Duncombe J, Fielding GA. Laparoscopic adjustable gastric banding for patients with body mass index of ≤35 kg/m2. Surg Obes Relat Dis. 2006;2:518–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33:33–40.CrossRefGoogle Scholar
  40. 40.
    Rehfeld JF. The new biology of gastrointestinal hormones. Physiol Rev. 1198;78:1087–108.Google Scholar
  41. 41.
    Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117:24–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.PubMedCrossRefGoogle Scholar
  43. 43.
    Mithieux G. The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2005;8:445–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Delaere F, Magnan C, Mithieux G. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab. 2010;36:257–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Cui XL, Sotenopoulos P, Tolias P, et al. Fructose-responsive genes in the small intestine of neonatal rats. Physiol Genomics. 2004;18:206–17.PubMedCrossRefGoogle Scholar
  46. 46.
    Kirchner S, Seixas P, Kaushik S, et al. Effect of low protein intake on extra-hepatic, gluconeogenic enzyme expression and peripheral, glucose phosphorylation in rainbow trout. Comp Biochem Physiol B Biochem Nol Biol. 2005;140:333–40.CrossRefGoogle Scholar
  47. 47.
    Yanez AJ, Nualart F, Droppelmann C, et al. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human issues other than liver and kidney. J Cell Physiol. 2003;197:189–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Chatelain F, Pegorier JP, Minassian C, et al. Development and regulation of glucose-6 phosphatase gene expression in liver, intestine and kidney; in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes. 1998;47:882–9.PubMedCrossRefGoogle Scholar
  49. 49.
    She P, Burgess SC, Shiota M, et al. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes. 2003;52:1649–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Battezzati A, Caumo A, Martino F, et al. Non hepatic glucose production in humans. Am J Physiol Endocrinol Metab. 2004;286:E124–35.Google Scholar
  51. 51.
    Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008;8:201–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Mithieux G. A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis. Nutrition. 2009;25:881–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Bikman BT, Zheng D, Pories WJ, et al. Mechanisms for improved insulin sensitivity after gastric bypass surgery. J Clin Endocrinol Metab. 2008;93:4656–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Flatt PR. Effective surgical treatment of obesity may be mediated by ablation of the lipogenic gut hormone gastric inhibitory polypeptide (GIP): evidence and clinical opportunity for development of new obesity-diabetes drugs. Diab Vasc Dis Res. 2007;4:150–2.Google Scholar
  55. 55.
    Kashyap SR, Daud S, Kelly KR, et al. Acute effect of gastric bypass versus gastric restrictive surgery on B-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond). 2010;34:462–71.CrossRefGoogle Scholar
  56. 56.
    Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15:474–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Strader AD, Vahl TP, Jandacek RJ, et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288:E447–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Patriti A, Facchiano E, Annetti C, et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto–Kakizaki rats through an enhanced proglucagon gene expression and L-cell number. Surg. 2007;142:74–85.CrossRefGoogle Scholar
  60. 60.
    Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery. Trends Endocrinol Metab. 2010;21:337–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Annals of Surg. 2006;244:741–9.CrossRefGoogle Scholar
  62. 62.
    Rodriguez-Grunert L, Galvao Neto MP, Alamo M, et al. First human experience with endoscopically delivered and retrieved duodenal–jejunal bypass sleeve. Surg Obes Relat Dis. 2008;4:55–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Tarnoff M, Sorli C, Rodriguez L, et al. Interim report of a prospective, randomized sham controlled trial investigating a completely endoscopic duodenal–jejunal bypass sleeve for the treatment of type 2 diabetes. Diabetes. 2008;57:A32.Google Scholar
  64. 64.
    Knop FK. Resolution of type 2 diabetes following gastric bypass surgery: involvement of gut-derived glucagon and glucagonotropic signalling. Diabetol. 2009;52:2270–6.CrossRefGoogle Scholar
  65. 65.
    Aronoff SL, Berkowitz K, Shreiner B, et al. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr. 2004;17:183–90.CrossRefGoogle Scholar
  66. 66.
    Holst JJ. Extra-pancreatic glucagons. Dig. 1978;17:168–90.Google Scholar
  67. 67.
    Holst JJ, Pedersen JH, Baldissera F, et al. Circulating glucagon after total pancreatectomy in man. Diabetol. 1983;25:396–9.CrossRefGoogle Scholar
  68. 68.
    Novak U, Wilks A, Buell G, et al. Identical messenger-Rna for preproglucagon in pancreas and gut. Eur J Biochem. 1987;164:553–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Mojsov S, Heinrich G, Wilson IB, et al. Preproglucagon gene-expression in pancreas and intestine diversifies at the level of posttranslational processing. J Biol Chem. 1986;261:11880–9.PubMedGoogle Scholar
  70. 70.
    Orskov C, Holst JJ, Knuhtsen S, et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinol. 1986;119:1467–75.CrossRefGoogle Scholar
  71. 71.
    Orskov C, Holst JJ, Poulsen SS, et al. Pancreatic and intestinal processing of proglucagon in man. Diabetol. 1987;30:874–81.Google Scholar
  72. 72.
    Orskov C, Andreasen J, Holst JJ. All products of proglucagon are elevated in plasma from uremic patients. J Clin Endocrinol Metab. 1992;74:379–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Orskov C, Bersani M, Johnsen AH, et al. Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem. 1989;264:12826–9.PubMedGoogle Scholar
  74. 74.
    Thim L, Moody AJ. The primary structure of porcine glicentin (proglucagon). Regul Pept. 1981;2:139–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Vilsboll T. On the role of the incretin hormones GIP and GLP-1 in the pathogenesis of type 2 diabetes mellitus. Dan Med Bull. 2004;51:364–70.PubMedGoogle Scholar
  76. 76.
    Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91:301–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Service GJ, Thompson GB, Service FJ, et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353:249–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Chevallier JM. Gastric banding using adjustable silastic ring in 2010. Technique, indications, results, and management. J Visceral Surg. 2010;147S:e21–9.CrossRefGoogle Scholar
  80. 80.
    Baltasar A, Serra C, Perez N, et al. Laparoscopic sleeve gastrectomy: a multi-purpose bariatric operation. Obes Surg. 2005;15:1124–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Kremen A, Linner JH, Nelson CH. An experimental evaluation of the nutritional importance of proximal and distal small intestine. Ann Surg. 1954;140:439–48.PubMedCrossRefGoogle Scholar
  82. 82.
    Griffen WO, Bivins BA, Bell RM. The decline and fall of jejunoileal bypass. Surg Gynecol Obstet. 1983;157:301–8.PubMedGoogle Scholar
  83. 83.
    Thomas S, Schauer P. Bariatric surgery and the gut hormone response. Nutr Clin Pract. 2010;25:175–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surg. 1996;119:261–8.CrossRefGoogle Scholar
  85. 85.
    Hess DS, Hess DW. Biliopancreatic diversion with a duodenal switch. Obes Surg. 1998;8:267–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005;6:153–69.PubMedGoogle Scholar
  87. 87.
    Kuntz E, Pinget M, Damge P. Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. JOP. 2004;5:464–75.PubMedGoogle Scholar
  88. 88.
    Ahren B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab. 2000;85:1043–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetol. 2003;46:798–801.CrossRefGoogle Scholar
  90. 90.
    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterol. 2007;132:2131–57.CrossRefGoogle Scholar
  91. 91.
    Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation and apoptosis. Mol Endocrinol. 2003;17:161–71.PubMedCrossRefGoogle Scholar
  92. 92.
    Ohneda A, Ohneda K, Nagasaki T, et al. Insulinotropic action of human glicentin in dogs. Metabolism. 1195;44:47–51.CrossRefGoogle Scholar
  93. 93.
    Sinclair EM, Drucker DJ. Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiol (Bethesda). 2005;20:357–65.CrossRefGoogle Scholar
  94. 94.
    Maida A, Lovshin JA, Baggio LL, et al. The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances β-cell function but does not inhibit gastric emptying in mice. Endocrinol. 2008;149:5670–8.CrossRefGoogle Scholar
  95. 95.
    Laferrere B, Swerdlow N, Bawa B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95:4072–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Korner J, Bessler M, Cirilo LJ, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.PubMedCrossRefGoogle Scholar
  97. 97.
    Chan JL, Mun EC, Stoyneva V, et al. Peptide YY levels are elevated after gastric bypass surgery. Obes (Silver Spring). 2006;14:194–8.CrossRefGoogle Scholar
  98. 98.
    van den Hoek AM, Heijboer AC, Corssmit EP, et al. PYY3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes. 2004;53:1949–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Priscila C. Sala
    • 1
    • 3
  • Raquel S. Torrinhas
    • 1
  • Steven B. Heymsfield
    • 2
  • Dan L. Waitzberg
    • 1
  1. 1.Department of Gastroenterology—Digestive Surgery Discipline (LIM 35)University of São Paulo—Medical SchoolSão PauloBrazil
  2. 2.Pennington Biomedical Research CenterBaton RougeUSA
  3. 3.Laboratório de Nutrição e Cirurgia Metabólica do Aparelho Digestivo—LIM 35University of São Paulo—Medical SchoolSão PauloBrazil

Personalised recommendations