Obesity Surgery

, Volume 20, Issue 12, pp 1660–1670 | Cite as

Zinc Deficiency: A Frequent and Underestimated Complication After Bariatric Surgery

  • Agnès Sallé
  • Delphine Demarsy
  • Anne Lise Poirier
  • Bénédicte Lelièvre
  • Philippe Topart
  • Gérard Guilloteau
  • Guillaume Bécouarn
  • Vincent Rohmer
Clinical Research

Abstract

Background

Although zinc deficiency is common after bariatric surgery, its incidence is underestimated. The objective was to monitor zinc and nutritional status before and 6, 12 and 24 months (M6, M12 and M24) after gastric bypass (Roux-en-Y gastric bypass), sleeve gastrectomy and biliopancreatic diversion with duodenal switch (DS) in patients receiving systematised nutritional care.

Methods

Data for 324 morbidly obese patients (mean body mass index 46.2 ± 7.3 kg/m2) were reviewed retrospectively. The follow-up period was 6 months for 272 patients, 12 months for 175, and 24 months for 70. Anthropometric, dietary and serum albumin, prealbumin, zinc, iron and transferrin saturation measures were determined at each timepoint.

Results

Nine percent of patients had zinc deficiency pre-operatively. Zinc deficiency was present in 42.5% of the population at M12 and then remained stable. Zinc deficiency was significantly more frequent after DS, with a prevalence of 91.7% at M12. Between M0 and M6, variation in plasma prealbumin, surgery type and zinc supplementation explained 27.2% of the variance in plasma zinc concentration. Surgery type explained 22.1% of this variance between M0 and M24. Mean supplemental zinc intake was low (22 mg/day). The percentage of patients taking zinc supplementation at M6, M12 and M24 was 8.9%, 20.6% and 29%, respectively.

Conclusions

Reduced protein intake, impaired zinc absorption and worsening compensatory mechanisms contribute to zinc deficiency. The mechanisms involved differ according to the type of surgery and time since surgery. Zinc supplementation is necessary early after bariatric surgery, but this requirement is often underestimated or is inadequate.

Keywords

Zinc deficiency Morbid obesity Gastric bypass Sleeve gastrectomy Biliopancreatic diversion 

References

  1. 1.
    Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32:1431–7.CrossRefGoogle Scholar
  2. 2.
    Perry CD, Hutter MM, Smith DB, et al. Survival and changes in comorbidities after bariatric surgery. Ann Surg. 2008;247:21–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Sjostrom L, Narbro K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.CrossRefPubMedGoogle Scholar
  5. 5.
    Oberlin Philippe. La chirurgie bariatrique en France de 1997 à 2005. In: Marie-Claude M, editor. Obesity (2007): Drees, Ministère de la Santé, de la Jeunesse et des Sports, 2007: 298–9.Google Scholar
  6. 6.
    Chimienti F, Aouffen M, Favier A, et al. Zinc homeostasis-regulating proteins: new drug targets for triggering cell fate. Curr Drug Targets. 2003;4:323–38.CrossRefPubMedGoogle Scholar
  7. 7.
    Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130:1447S–54.PubMedGoogle Scholar
  8. 8.
    McCall KA, Huang C, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr. 2000;130:1437S–46.PubMedGoogle Scholar
  9. 9.
    King JC. Determinants of maternal zinc status during pregnancy. Am J Clin Nutr. 2000;71:1334S–43.PubMedGoogle Scholar
  10. 10.
    Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3–18.CrossRefPubMedGoogle Scholar
  11. 11.
    Rossander-Hulten L, Brune M, Sandstrom B, et al. Competitive inhibition of iron absorption by manganese and zinc in humans. Am J Clin Nutr. 1991;54:152–6.PubMedGoogle Scholar
  12. 12.
    Ritz P, Becouarn G, Douay O, et al. Gastric bypass is not associated with protein malnutrition in morbidly obese patients. Obes Surg. 2009;19:840–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Faintuch J, Matsuda M, Cruz ME, et al. Severe protein–calorie malnutrition after bariatric procedures. Obes Surg. 2004;14:175–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Coupaye M, Puchaux K, Bogard C, et al. Nutritional consequences of adjustable gastric banding and gastric bypass: a 1-year prospective study. Obes Surg. 2009;19:56–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Bloomberg RD, Fleishman A, Nalle JE, et al. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15:145–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Schweitzer DH, Posthuma EF. Prevention of vitamin and mineral deficiencies after bariatric surgery: evidence and algorithms. Obes Surg. 2008;18:1485–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Martino G, Matera MG, De Martino B, et al. Relationship between zinc and obesity. J Med. 1993;24:177–83.PubMedGoogle Scholar
  18. 18.
    Peronne LGG, Moro R, Feng SL, et al. Zinc, copper, and iron in obese children and adolescents. Nutrition Res. 1998;18:183–9.CrossRefGoogle Scholar
  19. 19.
    Sturniolo GC, Montino MC, Rossetto L, et al. Inhibition of gastric acid secretion reduces zinc absorption in man. J Am Coll Nutr. 1991;10:372–5.PubMedGoogle Scholar
  20. 20.
    Gasteyger C, Suter M, Gaillard RC, et al. Nutritional deficiencies after Roux-en-Y gastric bypass for morbid obesity often cannot be prevented by standard multivitamin supplementation. Am J Clin Nutr. 2008;87:1128–33.PubMedGoogle Scholar
  21. 21.
    Madan AK, Orth WS, Tichansky DS, et al. Vitamin and trace mineral levels after laparoscopic gastric bypass. Obes Surg. 2006;16:603–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Vazquez C, Morejon E, Munoz C, et al. Nutritional effect of bariatric surgery with Scopinaro operation. Analysis of 40 cases. Nutr Hosp. 2003;18:189–93.PubMedGoogle Scholar
  23. 23.
    Slater GH, Ren CJ, Siegel N, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Andriollo-Sanchez M, Hininger-Favier I, Meunier N, et al. Zinc intake and status in middle-aged and older European subjects: the ZENITH study. Eur J Clin Nutr. 2005;59 Suppl 2:S37–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Bhatnagar S, Taneja S. Zinc and cognitive development. Br J Nutr. 2001;85 Suppl 2:S139–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Prasad A. Effects of zinc deficiency on immune functions. J Trace Elem Exp Med. 2000;13:1–20.CrossRefGoogle Scholar
  27. 27.
    Konukoglu D, Turhan MS, Ercan M, et al. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J Nutr Biochem. 2004;15:757–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Gibson RS. Zinc nutrition in developing countries. Nutr Res Rev. 1994;7:151–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Castillo-Duran C, Weisstaub G. Zinc supplementation and growth of the fetus and low birth weight infant. J Nutr. 2003;133:1494S–7.PubMedGoogle Scholar
  30. 30.
    ANAES. Rapport sur la chirurgie de l'obésité morbide de l'adulte. 2001.Google Scholar
  31. 31.
    Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118.PubMedGoogle Scholar
  32. 32.
    Salle A, Guilloteau G, Ryan M, et al. Effect of insulin treatment on the body composition of type 2 diabetic patients. Diabet Med. 2004;21:1298–303.CrossRefPubMedGoogle Scholar
  33. 33.
    Fischer PW, Giroux A, L'Abbe MR. Effect of zinc supplementation on copper status in adult man. Am J Clin Nutr. 1984;40:743–6.PubMedGoogle Scholar
  34. 34.
    Bourrier-Guérin L. CSF and plasma concentrations of 13 elements in various neurological disorders. Trace Elem Med. 1985;2:88–91.Google Scholar
  35. 35.
    Gibson RS. Principles of nutritional assessment. New York: Oxford University Press; 1990.Google Scholar
  36. 36.
    King JC. Assessment of zinc status. J Nutr. 1990;120 Suppl 11:1474–9.PubMedGoogle Scholar
  37. 37.
    Hess SY, Peerson JM, King JC, et al. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr Bull. 2007;28:S403–29.PubMedGoogle Scholar
  38. 38.
    Hotz C, Peerson JM, Brown KH. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am J Clin Nutr. 2003;78:756–64.PubMedGoogle Scholar
  39. 39.
    Faure H, Favier A, Tripier M, et al. Determination of the major zinc fractions in human serum by ultrafiltration. Biol Trace Elem Res. 1990;24:25–37.CrossRefPubMedGoogle Scholar
  40. 40.
    Pinna K, Woodhouse LR, Sutherland B, et al. Exchangeable zinc pool masses and turnover are maintained in healthy men with low zinc intakes. J Nutr. 2001;131:2288–94.PubMedGoogle Scholar
  41. 41.
    Cominetti C, Garrido Jr AB, Cozzolino SM. Zinc nutritional status of morbidly obese patients before and after Roux-en-Y gastric bypass: a preliminary report. Obes Surg. 2006;16:448–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Hashim Z, Woodhouse L, King JC. Interindividual variation in circulating zinc concentrations among healthy adult men and women. Int J Food Sci Nutr. 1996;47:383–90.CrossRefPubMedGoogle Scholar
  43. 43.
    Hyun TH, Barrett-Connor E, Milne DB. Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr. 2004;80:715–21.PubMedGoogle Scholar
  44. 44.
    Pires LV, Martins LM, Geloneze B, et al. The effect of Roux-en-Y gastric bypass on zinc nutritional status. Obes Surg. 2007;17:617–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Ball MJ, Ackland ML. Zinc intake and status in Australian vegetarians. Br J Nutr. 2000;83:27–33.PubMedGoogle Scholar
  46. 46.
    Flegal KM. Evaluating epidemiologic evidence of the effects of food and nutrient exposures. Am J Clin Nutr. 1999;69:1339S–44.PubMedGoogle Scholar
  47. 47.
    Salle A, Ryan M, Ritz P. Underreporting of food intake in obese diabetic and nondiabetic patients. Diab Care. 2006;29:2726–7.CrossRefGoogle Scholar
  48. 48.
    Andersen T, Larsen U. Dietary outcome in obese patients treated with a gastroplasty program. Am J Clin Nutr. 1989;50:1328–40.PubMedGoogle Scholar
  49. 49.
    Cooper PL, Brearley LK, Jamieson AC, et al. Nutritional consequences of modified vertical gastroplasty in obese subjects. Int J Obes Relat Metab Disord. 1999;23:382–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Mares-Perlman JA, Subar AF, Block G, et al. Zinc intake and sources in the US adult population: 1976–1980. J Am Coll Nutr. 1995;14:349–57.PubMedGoogle Scholar
  51. 51.
    Lee DY, Prasad AS, Hydrick-Adair C, et al. Homeostasis of zinc in marginal human zinc deficiency: role of absorption and endogenous excretion of zinc. J Lab Clin Med. 1993;122:549–56.PubMedGoogle Scholar
  52. 52.
    Hunt JR, Beiseigel JM, Johnson LK. Adaptation in human zinc absorption as influenced by dietary zinc and bioavailability. Am J Clin Nutr. 2008;87:1336–45.PubMedGoogle Scholar
  53. 53.
    Weigand E. Absorption of trace elements: zinc. Int J Vitam Nutr Res Suppl. 1983;25:67–81.PubMedGoogle Scholar
  54. 54.
    Johnson PE, Hunt JR, Ralston NV. The effect of past and current dietary Zn intake on Zn absorption and endogenous excretion in the rat. J Nutr. 1988;118:1205–9.PubMedGoogle Scholar
  55. 55.
    Hara H, Konishi A, Kasai T. Contribution of the cecum and colon to zinc absorption in rats. J Nutr. 2000;130:83–9.PubMedGoogle Scholar
  56. 56.
    Yamaji S, Tennant J, Tandy S, et al. Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Lett. 2001;507:137–41.CrossRefPubMedGoogle Scholar
  57. 57.
    Arredondo M, Martinez R, Nunez MT, et al. Inhibition of iron and copper uptake by iron, copper and zinc. Biol Res. 2006;39:95–102.CrossRefPubMedGoogle Scholar
  58. 58.
    Troost FJ, Brummer RJ, Dainty JR, et al. Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects. Am J Clin Nutr. 2003;78:1018–23.PubMedGoogle Scholar
  59. 59.
    Kordas K, Stoltzfus RJ. New evidence of iron and zinc interplay at the enterocyte and neural tissues. J Nutr. 2004;134:1295–8.PubMedGoogle Scholar
  60. 60.
    Olivares M, Pizarro F, Ruz M. Zinc inhibits nonheme iron bioavailability in humans. Biol Trace Elem Res. 2007;117:7–14.CrossRefPubMedGoogle Scholar
  61. 61.
    Olivares M, Pizarro F, Ruz M. New insights about iron bioavailability inhibition by zinc. Nutrition. 2007;23:292–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Crofton RW, Gvozdanovic D, Gvozdanovic S, et al. Inorganic zinc and the intestinal absorption of ferrous iron. Am J Clin Nutr. 1989;50:141–4.PubMedGoogle Scholar
  63. 63.
    LopezdeRomana D, Ruz M, Pizarro F, et al. Supplementation with zinc between meals has no effect on subsequent iron absorption or on iron status of Chilean women. Nutrition. 2008;24:957–63.CrossRefGoogle Scholar
  64. 64.
    Donangelo CM, Woodhouse LR, King SM, et al. Supplemental zinc lowers measures of iron status in young women with low iron reserves. J Nutr. 2002;132:1860–4.PubMedGoogle Scholar
  65. 65.
    Yadrick MK, Kenney MA, Winterfeldt EA. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females. Am J Clin Nutr. 1989;49:145–50.PubMedGoogle Scholar
  66. 66.
    Solomons NW. Factors affecting the bioavailability of zinc. J Am Diet Assoc. 1982;80:115–21.PubMedGoogle Scholar
  67. 67.
    Tran CD, Miller LV, Krebs NF, et al. Zinc absorption as a function of the dose of zinc sulfate in aqueous solution. Am J Clin Nutr. 2004;80:1570–3.PubMedGoogle Scholar
  68. 68.
    Fortes C, Agabiti N, Fano V, et al. Zinc supplementation and plasma lipid peroxides in an elderly population. Eur J Clin Nutr. 1997;51:97–101.CrossRefPubMedGoogle Scholar
  69. 69.
    Neve HJ, Bhatti WA, Soulsby C, et al. Reversal of hair loss following vertical gastroplasty when treated with zinc sulphate. Obes Surg. 1996;6:63–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Agnès Sallé
    • 1
    • 5
  • Delphine Demarsy
    • 1
  • Anne Lise Poirier
    • 2
  • Bénédicte Lelièvre
    • 3
  • Philippe Topart
    • 4
  • Gérard Guilloteau
    • 1
  • Guillaume Bécouarn
    • 4
  • Vincent Rohmer
    • 1
  1. 1.Pôle de Médecine Interne et des Maladies MétaboliquesCentre Hospitalier UniversitaireAngersFrance
  2. 2.Centre Paul PapinAngersFrance
  3. 3.Laboratoire de PharmacologieCentre Hospitalier UniversitaireAngersFrance
  4. 4.Société de ChirurgieClinique de l’AnjouAngersFrance
  5. 5.Département d’Endocrinologie-Diabétologie-NutritionCHU AngersAngers cedex 09France

Personalised recommendations