Obesity Surgery

, Volume 21, Issue 8, pp 1257–1264

Pilot Study Examining the Frequency of Several Gene Polymorphisms Involved in Morphine Pharmacodynamics and Pharmacokinetics in a Morbidly Obese Population

  • Célia Lloret Linares
  • Aline Hajj
  • Christine Poitou
  • Guy Simoneau
  • Karine Clement
  • Jean Louis Laplanche
  • Jean-Pierre Lépine
  • Jean François Bergmann
  • Stéphane Mouly
  • Katell Peoc’h
Clinical Report

Abstract

Morbidly obese patients are at significantly elevated risk of postsurgery complications and merit closer monitoring by health care professionals after bariatric surgery. It is now recognized that genetic factors influence individual patient’s response to drug used in anesthesia and analgesia. Among the many drug administered by anesthetists, we focused in this pilot study on morphine, since morphine patient-controlled anesthesia in obese patients undergoing gastric bypass surgery is frequently prescribed. We examined the allelic frequency of three polymorphisms involved in morphine pharmacodynamics and pharmacokinetics in patients with body mass index (BMI) >40. One hundred and nine morbidly obese patients (BMI = 49.1 ± 7.7 kg/m²) were genotyped for three polymorphisms c.A118G of mu opioid receptor (OPRM1), c.C3435T of the P-glycoprotein gene (ABCB1), and p.Val158Met of catechol-O-methyltransferase gene (COMT). Allelic frequencies were 118G—0.22, C3435—0.55, and 158Met—0.5 in our whole population and 0.23, 0.5, and 0.47 in Caucasian population. Allelic frequencies did not differ according to gender. Mean BMI did no differ according to the allelic variant. OPRM1118G allele was more frequent in our population than in most previously described European populations. Since the concept of “personalized medicine” promises to individualize therapeutics and optimize medical treatment in term of efficacy and safety, especially when prescribing drugs with a narrow therapeutic index such as morphine, further clinical studies examining the clinical consequences of the OPRM1 c.A118G polymorphism in patients undergoing gastric bypass surgery are needed.

Keywords

Morphine Pharmacogenetics Obesity OPRM1 ABCB1 COMT Analgesia 

List of abbreviations

ABCB1

ATP-binding cassette, subfamily B, member 1

BMI

body mass index

COMT

catechol-O-methyltransferase (enzyme and gene)

DNA

deoxyribonucleic acid

EDTA

ethylenediaminetetraacetic acid

M6G

morphine-6-glucuronide

MAO-A

monoamine oxydase A

MAO-B

monoamine oxydase B

MOR

mu opioid receptor

OPRM1

mu opioid receptor gene

P-gp

P-glycoprotein

SNP

single nucleotide polymorphism

References

  1. 1.
    Flum DR, Belle SH, King WC, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Flum DR, Salem L, Elrod JA, et al. Early mortality among Medicare beneficiaries undergoing bariatric surgical procedures. Jama. 2005;294:1903–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ahmad S, Nagle A, McCarthy RJ, et al. Postoperative hypoxemia in morbidly obese patients with and without obstructive sleep apnea undergoing laparoscopic bariatric surgery. Anesth Analg. 2008;107:138–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81:429–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Aubrun F, Bunge D, Langeron O, et al. Postoperative morphine consumption in the elderly patient. Anesthesiology. 2003;99:160–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Lloret Linares C, Decleves X, Oppert JM, et al. Pharmacology of morphine in obese patients: clinical implications. Clin Pharmacokinet. 2009;48:635–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Arias A, Feinn R, Kranzler HR. Association of an Asn40Asp (A118G) polymorphism in the mu-opioid receptor gene with substance dependence: a meta-analysis. Drug Alcohol Depend. 2006;83:262–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Grosch S, Niederberger E, Lotsch J, et al. A rapid screening method for a single nucleotide polymorphism (SNP) in the human MOR gene. Br J Clin Pharmacol. 2001;52:711–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Klepstad P, Rakvag TT, Kaasa S, et al. The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand. 2004;48:1232–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Ikeda K, Ide S, Han W, et al. How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci. 2005;26:311–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang Y, Wang D, Johnson AD, et al. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280:32618–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Lotsch J, Skarke C, Grosch S, et al. The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics. 2002;12:3–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Oertel BG, Schmidt R, Schneider A, et al. The mu-opioid receptor gene polymorphism 118A > G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet Genomics. 2006;16:625–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Romberg RR, Olofsen E, Bijl H, et al. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A > G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 2005;102:522–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Chou WY, Wang CH, Liu PH, et al. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology. 2006;105:334–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Chou WY, Yang LC, Lu HF, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand. 2006;50:787–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Coulbault L, Beaussier M, Verstuyft C, et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther. 2006;79:316–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Hirota T, Ieiri I, Takane H, et al. Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos. 2003;31:677–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim RB. MDR1 single nucleotide polymorphisms: multiplicity of haplotypes and functional consequences. Pharmacogenetics. 2002;12:425–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Ray LA, Hutchison KE. Effects of naltrexone on alcohol sensitivity and genetic moderators of medication response: a double-blind placebo-controlled study. Arch Gen Psychiatry. 2007;64:1069–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Ray R, Jepson C, Patterson F, et al. Association of OPRM1 A118G variant with the relative reinforcing value of nicotine. Psychopharmacology (Berl). 2006;188:355–63.CrossRefGoogle Scholar
  22. 22.
    Filbey FM, Ray L, Smolen A, et al. Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcohol Clin Exp Res. 2008;32:1113–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Wiers RW, Rinck M, Dictus M, et al. Relatively strong automatic appetitive action-tendencies in male carriers of the OPRM1 G-allele. Genes Brain Behav. 2009;8:101–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim SG, Kim CM, Choi SW, et al. A micro opioid receptor gene polymorphism (A118G) and naltrexone treatment response in adherent Korean alcohol-dependent patients. Psychopharmacology (Berl). 2009;201:611–8.CrossRefGoogle Scholar
  25. 25.
    Crowley JJ, Oslin DW, Patkar AA, et al. A genetic association study of the mu opioid receptor and severe opioid dependence. Psychiatr Genet. 2003;13:169–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Drewe J, Ball HA, Beglinger C, et al. Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br J Clin Pharmacol. 2000;50:237–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Kharasch ED, Hoffer C, Whittington D, et al. Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther. 2003;74:543–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Skarke C, Darimont J, Schmidt H, et al. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther. 2003;73:107–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97:3473–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Meier Y, Pauli-Magnus C, Zanger UM, et al. Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology. 2006;44:62–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Siegmund W, Ludwig K, Giessmann T, et al. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol. Clin Pharmacol Ther. 2002;72:572–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Song P, Lamba JK, Zhang L, et al. G2677T and C3435T genotype and haplotype are associated with hepatic ABCB1 (MDR1) expression. J Clin Pharmacol. 2006;46:373–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Owen A, Goldring C, Morgan P, et al. Relationship between the C3435T and G2677T(A) polymorphisms in the ABCB1 gene and P-glycoprotein expression in human liver. Br J Clin Pharmacol. 2005;59:365–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Thorn M, Finnstrom N, Lundgren S, et al. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol. 2005;60:54–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Meineke I, Freudenthaler S, Hofmann U, et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol. 2002;54:592–603.PubMedCrossRefGoogle Scholar
  36. 36.
    Campa D, Gioia A, Tomei A, et al. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83:559–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Coller JK, Barratt DT, Dahlen K, et al. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther. 2006;80:682–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Zubieta JK, Heitzeg MM, Smith YR, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003;299:1240–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Ross JR, Rutter D, Welsh K, et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J. 2005;5:324–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Fan JB, Zhang CS, Gu NF, et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry. 2005;57:139–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Reyes-Gibby CC, Shete S, Rakvag T, et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain. 2007;130:25–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Scheiner MA, Damasceno AM, Maia RC. ABCB1 single nucleotide polymorphisms in the Brazilian population. Mol Biol Rep. 2010;37:111–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Bergen AW, Kokoszka J, Peterson R, et al. Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatry. 1997;2:490–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A. 1998;95:9608–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Daniels JK, Williams NM, Williams J, et al. No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol O-methyltransferase activity. Am J Psychiatry. 1996;153:268–70.PubMedGoogle Scholar
  47. 47.
    Luo X, Kranzler HR, Zhao H, et al. Haplotypes at the OPRM1 locus are associated with susceptibility to substance dependence in European-Americans. Am J Med Genet B Neuropsychiatr Genet. 2003;120B:97–108.PubMedCrossRefGoogle Scholar
  48. 48.
    Schinka JA, Town T, Abdullah L, et al. A functional polymorphism within the mu-opioid receptor gene and risk for abuse of alcohol and other substances. Mol Psychiatry. 2002;7:224–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Franke P, Wang T, Nothen MM, et al. Nonreplication of association between mu-opioid-receptor gene (OPRM1) A118G polymorphism and substance dependence. Am J Med Genet. 2001;105:114–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Bart G, Heilig M, LaForge KS, et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry. 2004;9:547–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Need AC, Ahmadi KR, Spector TD, et al. Obesity is associated with genetic variants that alter dopamine availability. Ann Hum Genet. 2006;70:293–303.PubMedCrossRefGoogle Scholar
  52. 52.
    Volkow ND, Wang GJ, Fowler JS, et al. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 2008;363:3191–200.PubMedCrossRefGoogle Scholar
  53. 53.
    Fuemmeler BF, Agurs-Collins TD, McClernon FJ, et al. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity (Silver Spring). 2008;16:348–55.CrossRefGoogle Scholar
  54. 54.
    Gosnell BA, Levine AS. Reward systems and food intake: role of opioids. Int J Obes (Lond). 2009;33 Suppl 2:S54–8.CrossRefGoogle Scholar
  55. 55.
    Olszewski PK, Levine AS. Central opioids and consumption of sweet tastants: when reward outweighs homeostasis. Physiol Behav. 2007;91:506–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Davis CA, Levitan RD, Reid C, et al. Dopamine for "Wanting" and Opioids for "Liking": a comparison of obese adults with and without binge eating. Obesity (Silver Spring). 2009;17:1220–5.Google Scholar
  57. 57.
    Raymond NC, de Zwaan M, Faris PL, et al. Pain thresholds in obese binge-eating disorder subjects. Biol Psychiatry. 1995;37:202–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Xu L, Zhang F, Zhang DD, et al. OPRM1 gene is associated with BMI in Uyghur population. Obesity (Silver Spring). 2009;17:121–5.CrossRefGoogle Scholar
  59. 59.
    Bournissen FG, Moretti ME, Juurlink DN, et al. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia. 2009;50:898–903.PubMedCrossRefGoogle Scholar
  60. 60.
    Komoto C, Nakamura T, Sakaeda T, et al. MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab Pharmacokinet. 2006;21:126–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Aarnoudse AL, van Schaik RH, Dieleman J, et al. MDR1 gene polymorphisms are associated with neuropsychiatric adverse effects of mefloquine. Clin Pharmacol Ther. 2006;80:367–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Roberts RL, Joyce PR, Mulder RT, et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2:191–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Bebek N, Cine N, Oner GO, et al. Genotype and allele frequencies of MDR-1 C3435T polymorphism in Turkish population. J Neurol Sci (Turkish). 2005;37:261–6.Google Scholar
  64. 64.
    Fiedler T, Buning C, Reuter W, et al. Possible role of MDR1 two-locus genotypes for young-age onset ulcerative colitis but not Crohn's disease. Eur J Clin Pharmacol. 2007;63:917–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001;69:169–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Kuzman MR, Medved V, Bozina N, et al. The influence of 5-HT(2C) and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res. 2008;160:308–15.PubMedCrossRefGoogle Scholar
  67. 67.
    Ichihara S, Yamada Y, Kato K, et al. Association of a polymorphism of ABCB1 with obesity in Japanese individuals. Genomics. 2008;91:512–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Dreher JC, Kohn P, Kolachana B, et al. Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci U S A. 2009;106:617–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Forbes EE, Brown SM, Kimak M, et al. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry. 2009;14:60–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Strous RD, Bark N, Woerner M, et al. Lack of association of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia. Biol Psychiatry. 1997;41:493–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001;98:6917–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Karayiorgou M, Gogos JA, Galke BL, et al. Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility. Biol Psychiatry. 1998;43:425–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Norton N, Kirov G, Zammit S, et al. Schizophrenia and functional polymorphisms in the MAOA and COMT genes: no evidence for association or epistasis. Am J Med Genet. 2002;114:491–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Joober R, Gauthier J, Lal S, et al. Catechol-O-methyltransferase Val-108/158-Met gene variants associated with performance on the Wisconsin Card Sorting Test. Arch Gen Psychiatry. 2002;59:662–3.PubMedCrossRefGoogle Scholar
  75. 75.
    de Chaldee M, Laurent C, Thibaut F, et al. Linkage disequilibrium on the COMT gene in French schizophrenics and controls. Am J Med Genet. 1999;88:452–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Herken H, Erdal ME. Catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis. Psychiatr Genet. 2001;11:105–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Gallinat J, Bajbouj M, Sander T, et al. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry. 2003;54:40–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Rujescu D, Giegling I, Gietl A, et al. A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biol Psychiatry. 2003;54:34–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Illi A, Kampman O, Anttila S, et al. Interaction between angiotensin-converting enzyme and catechol-O-methyltransferase genotypes in schizophrenics with poor response to conventional neuroleptics. Eur Neuropsychopharmacol. 2003;13:147–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Annerbrink K, Westberg L, Nilsson S, et al. Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism. 2008;57:708–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Tworoger SS, Chubak J, Aiello EJ, et al. The effect of CYP19 and COMT polymorphisms on exercise-induced fat loss in postmenopausal women. Obes Res. 2004;12:972–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Célia Lloret Linares
    • 1
    • 2
  • Aline Hajj
    • 3
    • 4
  • Christine Poitou
    • 1
    • 5
  • Guy Simoneau
    • 2
  • Karine Clement
    • 1
    • 5
  • Jean Louis Laplanche
    • 3
    • 4
  • Jean-Pierre Lépine
    • 3
  • Jean François Bergmann
    • 2
  • Stéphane Mouly
    • 2
    • 3
  • Katell Peoc’h
    • 3
    • 4
    • 6
  1. 1.Department of Nutrition and EndocrinologyAssistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière HospitalParisFrance
  2. 2.Department of Internal MedicineAssistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Unit of Therapeutic ResearchParis Cedex 10France
  3. 3.Institut National de la Santé et de la Recherche Médicale U705, Centre National de la Recherche Scientifique UMR 7157, Faculty of PharmacyParis-Cité Descartes UniversityParisFrance
  4. 4.Department of Biochemistry and Molecular BiologyAssistance Publique-Hôpitaux de Paris, Hôpital LariboisièreParis Cedex 10France
  5. 5.Institut National de la Santé et de la Recherche Médicale, U872 team7, Nutriomique, Cordelier Research CenterParisFrance
  6. 6.Hôpital Lariboisière, Service de Biochimie et Biologie MoléculaireParisFrance

Personalised recommendations