Advertisement

Obesity Surgery

, Volume 19, Issue 8, pp 1150–1158 | Cite as

Lipoprotein Lipase but Not Hormone-Sensitive Lipase Activities Achieve Normality After Surgically Induced Weight Loss in Morbidly Obese Patients

  • E. Pardina
  • A. Lecube
  • R. Llamas
  • R. Catalán
  • R. Galard
  • J. M. Fort
  • H. Allende
  • V. Vargas
  • J. A. Baena-Fustegueras
  • J. Peinado-Onsurbe
Clinical Research

Abstract

Background

Although bariatric surgery is currently the most common practice for inducing weight loss in morbidly obese patients (BMI > 40 kg/m2), its effect on the lipid content of adipose tissue and its lipases (lipoprotein lipase [LPL] and hormone-sensitive lipase [HSL]) are controversial.

Methods

We analyzed LPL and HSL activities and lipid content from plasma as well as subcutaneous (SAT) and visceral (VAT) adipose tissue of 34 morbidly obese patients (MO) before and after (6 and 12 months) Roux-en-Y gastric bypass surgery and compare the values with those of normal weight (control) patients.

Results

LPL activity was significantly higher in MO (SAT = 32.9 ± 1.0 vs VAT = 36.4 ± 3.3 mU/g tissue; p < 0.001) than in control subjects (SAT = 8.2 ± 1.4 vs VAT = 6.8 ± 1.0 mU/g tissue) in both adipose depots. HSL activity had similar values in both types of tissue (SAT = 32.8 ± 1.6 and VAT = 32.9 ± 1.6 mU/g) of MO. In the control group, we found similar results but with lower values (SAT = 11.9 ± 1.4 vs VAT = 12.1 ± 1.4 mU/g tissue). Twelve months after surgery, SAT LPL activity diminished (9.8 ± 1.4 mU/g tissue, p < 0.001 vs morbidly obese), while HSL (46.6 ± 3.7 mU/g tissue) remained high. All lipids in tissue and plasma diminished after bariatric surgery except plasma nonesterified fatty acids, which maintained higher levels than controls (16 ± 3 vs 9 ± 0 mg/dL; p < 0.001, respectively).

Conclusions

When obese patients lose weight, they lose not only part of the lipid content of the cells but also the capacity to store triacylglycerides in SAT depots.

Keywords

Adipocyte size Obesity Weight loss NEFA LPL HSL 

Abbreviations

HOMA-IR

Homeostasis model assessment of insulin resistance

NEFA

Nonesterified fatty acid

LPL

Lipoprotein lipase

HSL

Hormone-sensitive lipase.

Notes

Acknowledgments

This research was funded by the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III of the Spanish Ministry for Health and Consumer Affairs (PI030042, PI030024, and PI070079). Both R. Llamas and E. Pardina were awarded grants by the same institution. We express thanks to Professor M. Llobera for his inestimable help.

Conflict of interest

The authors have declared that no conflict of interest exists. The authors who have taken part in this study do not have a relationship, past or present, with the manufacturers of the drugs involved and did not receive funding from the manufacturers to carry out their research.

Writing assistance

English grammar and language have been corrected by American Journal Experts (https://doi.org/www.journalexperts.com).

References

  1. 1.
    Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21:697–738.CrossRefGoogle Scholar
  2. 2.
    Kolehmainen M, Vidal H, Ohisalo JJ et al. Hormone sensitive lipase expression and adipose tissue metabolism show gender differences in obese subjects after weight loss. Int J Obes Relat Metab Disord. 2002;26(1):6–16.CrossRefGoogle Scholar
  3. 3.
    Marin P, Andersson B, Ottosson M, et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992;41:1242–48.CrossRefGoogle Scholar
  4. 4.
    Rebuffe-Scrive M, Andersson B, Olbe L, et al. Metabolism of adipose tissue in intraabdominal depots of nonobese men and women. Metabolism. 1989;38:453–8.CrossRefGoogle Scholar
  5. 5.
    Meisner H, Tenney K. pH as an indicator of free fatty acid release from adipocytes. J Lipid Res. 1977;18:774–6PubMedGoogle Scholar
  6. 6.
    Large V, Reynisdottir S, Langin D, et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res. 1999;40:2059–66.PubMedGoogle Scholar
  7. 7.
    Hansen EN, Torquati A, Abumrad NN. Results of bariatric surgery. Annu Rev Nutr. 2006;26:481–511.CrossRefGoogle Scholar
  8. 8.
    Frayn KN, Coppack SW, Fielding BA, et al. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv Enzyme Regul. 1995;35:163–78.CrossRefGoogle Scholar
  9. 9.
    Lofgren P, Hoffstedt J, Ryden M, et al. Major gender differences in the lipolytic capacity of abdominal subcutaneous fat cells in obesity observed before and after long-term weight reduction. J Clin Endocrinol Metab. 2002;87:764–71.CrossRefGoogle Scholar
  10. 10.
    Sociedad Española para el estudio de la Obesidad (SEEDO). SEEDO'2000 consensus for the evaluation of overweight and obesity and the establishment of criteria for therapeutic intervention. Med Clin. 2000;115:587–97.CrossRefGoogle Scholar
  11. 11.
    (1988) The Airlie (VA) Consensus Conference. In: Loham T, Roche A, Martorel R (eds.) Standardization of anthropometric measurements. Human Kinetics, Champaign, pp. 20–37.Google Scholar
  12. 12.
    Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr. 1991;65:105–14.CrossRefGoogle Scholar
  13. 13.
    Bonora E, Micciolo R, Ghiatas AA. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism. 1995;44:1617–25.CrossRefGoogle Scholar
  14. 14.
    Belfrage P, Vaughan M. Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J Lipid Res. 1969;10:341–4.PubMedGoogle Scholar
  15. 15.
    Blay M, Peinado-Onsurbe J, Grasa MM, et al. Effect of oral oleoyl-estrone treatment on plasma lipoproteins and tissue lipase activities of Zucker lean and obese female rats. Int J Obes Relat Metab Disord. 2002;26:618–26.CrossRefGoogle Scholar
  16. 16.
    Briquet-Laugier V, Ben-Zeev O, Doolittle MH. Determining lipoprotein lipase and hepatic lipase activity using radiolabeled substrates. Methods Mol Biol. 1999;109:81–94.PubMedGoogle Scholar
  17. 17.
    Ballart X, Siches M, Peinado-Onsurbe J, et al. Isoproterenol increases active lipoprotein lipase in adipocyte medium and in rat plasma. Biochimie. 2003;85:971–82.CrossRefGoogle Scholar
  18. 18.
    McCoy MG, Sun GS, Marchadier D, et al. Characterization of the lipolytic activity of endothelial lipase. J Lipid Res. 2002;43:921–9.PubMedGoogle Scholar
  19. 19.
    Ramírez I, Kryski AJ, Ben-Zeev O, et al. Characterization of triacylglycerol hydrolase activities in isolated myocardial cells from rat heart. Biochem J. 1985;232:229–36.CrossRefGoogle Scholar
  20. 20.
    Stam H, Hülsmann WC. Comparison of heparin-releasable lipase and tissue neutral lipase activity of rat heart. Biochem Int. 1983;7:187–95.PubMedGoogle Scholar
  21. 21.
    Mairal A, Langin D, Arner P, et al. Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity. Diabetologia. 2006;49:1629–36.CrossRefGoogle Scholar
  22. 22.
    Rodríguez-Sureda V, Peinado-Onsurbe J. A procedure for measuring triacylglyceride and cholesterol content using a small amount of tissue. Anal Biochem. 2005;343:277–82.CrossRefGoogle Scholar
  23. 23.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefGoogle Scholar
  24. 24.
    Vytasek R. A sensitive fluorometric assay for the determination of DNA. Anal Biochem. 1982;120:243–8.CrossRefGoogle Scholar
  25. 25.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–19.CrossRefGoogle Scholar
  26. 26.
    Robin AP, Greenwood MR, Askanazi J, et al. Influence of total parenteral nutrition on tissue lipoprotein lipase activity during chronic and acute illness. Ann Surg. 1981;194:681–6.CrossRefGoogle Scholar
  27. 27.
    Garaulet M, Hernandez-Morante JJ, Lujan J, et al. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int J Obes. 2006;30:899–905.CrossRefGoogle Scholar
  28. 28.
    Bullo M, Garcia-Lorda P, Peinado-Onsurbe J, et al. TNFα expression of subcutaneous adipose tissue in obese and morbid obese females: relationship to adipocyte LPL activity and leptin synthesis. Int J Obes Relat Metab Disord. 2002;26:652–8.CrossRefGoogle Scholar
  29. 29.
    Taskinen MR, Nikkila EA, Huttunen JK, et al. A micromethod for assay of lipoprotein lipase activity in needle biopsy samples of human adipose tissue and skeletal muscle. Clin Chim Acta. 1980;104:107–17.CrossRefGoogle Scholar
  30. 30.
    Taskinen MR, Nikkilä EA, Kuusi T. Lipoprotein lipase activity of adipose tissue skeletal muscle and post-heparin plasma in primary endogenous hypertriglyceridaemia: relation to lipoprotein pattern and to obesity. Eur J Clin Inves. 1982;12:433–8.CrossRefGoogle Scholar
  31. 31.
    Panarotto D, Poisson J, Devroede G, et al. Lipoprotein lipase steady-state mRNA levels are lower in human omental versus subcutaneous abdominal adipose tissue. Metabolism. 2000;49:1224–7.CrossRefGoogle Scholar
  32. 32.
    Jacobsson B, Smith U. Effect of cell size on lipolysis and antilipolytic action of insulin in human fat cells. J Lipid Res. 1972;13:651–6.PubMedGoogle Scholar
  33. 33.
    Ramis JM, Salinas R, Garcia-Sanz JM, et al. Depot- and gender-related differences in the lipolytic pathway of adipose tissue from severely obese patients. Cell Physiol Biochem. 2006;17:173–80.CrossRefGoogle Scholar
  34. 34.
    Thyfault JP, Krauss MR, Hickner RC, et al. Impaired plasma fatty acid oxidation in extremely obese women. Am J Physiol Endocrinol Metab. 2004;287:E1076–81.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • E. Pardina
    • 1
  • A. Lecube
    • 2
  • R. Llamas
    • 1
  • R. Catalán
    • 3
  • R. Galard
    • 3
  • J. M. Fort
    • 4
  • H. Allende
    • 5
    • 7
  • V. Vargas
    • 6
    • 7
  • J. A. Baena-Fustegueras
    • 4
  • J. Peinado-Onsurbe
    • 1
  1. 1.Biochemistry and Molecular Biology Department, Biology FacultyUniversitat de BarcelonaBarcelonaSpain
  2. 2.Diabetes Research Unit, Institut De Recerca Vall D’Hebron, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos III (ISCIII)BarcelonaSpain
  3. 3.Biochemistry DepartmentInstitut De Recerca Vall D’HebronBarcelonaSpain
  4. 4.Endocrinology Surgery Unit, Institut De Recerca Vall D’HebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  5. 5.Pathology Division, Institut De Recerca Vall D’HebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  6. 6.Liver UnitInstitut De Recerca Vall D’Hebron Universitat Autònoma De BarcelonaBarcelonaSpain
  7. 7.CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD)Instituto de Salud Carlos III (ISCIII)BarcelonaSpain

Personalised recommendations