Obesity Surgery

, Volume 19, Issue 5, pp 608–616 | Cite as

Lipoprotein Lipase Expression in Livers of Morbidly Obese Patients Could be Responsible for Liver Steatosis

  • Eva Pardina
  • Juan A. Baena-Fustegueras
  • Rafael Llamas
  • Roberto Catalán
  • Rosa Galard
  • Albert Lecube
  • Jose M. Fort
  • Miquel Llobera
  • Helena Allende
  • Víctor Vargas
  • Julia Peinado-Onsurbe
Clinical Research



Most patients with morbid obesity develop non-alcoholic fatty liver disease (NAFLD). The origins of lipid deposition in the liver and the effects of bariatric surgery in the obese with NAFLD are controversial.


We analyzed lipids and lipoprotein lipase (LPL) in both plasma and liver biopsies performed before and 12–18 months after Roux-en-Y gastric bypass surgery in 26 patients.


In the livers of morbidly obese patients, the levels of LPL messenger RNA (mRNA) were higher (4.5-fold) before surgery than afterwards than control livers. In these patients, LPL activity was also significantly higher (91 ± 7 mU/g) than in controls (51 ± 3 mU/g, p = 0.0026) and correlated with the severity of the liver damage. All hepatic lipids were significantly increased in obese patients; however, after bariatric surgery, these lipids, with the exception of NEFA, tended to recover to normal levels.


The liver of obese patients presented higher LPL activity than controls, and unlike the controls, this enzyme could be synthesized in the liver because it also present LPL mRNA. The presence of the LPL activity could enable the liver to capture circulating triacylglycerides, thus favoring the typical steatosis observed in these patients.


Metabolic syndrome Hepatic steatosis NAFLD NASH LPL 



non-alcoholic fatty liver disease


lipoprotein lipase


free fatty acids


alanine aminotransferase


aspartate aminotransferase


homeostasis model assessment of insulin resistance



We are indebted to Drs. J. A. Baena, J. M. Fort, R. Catalán, R. Galard, A. Lecube, H. Allende, and V. Vargas for their outstanding work with subjects in the hospital and for their important contribution to this research. The authors thank Dr. J. D. Brunzell (University of Washington, Seattle, WA, USA) for providing 5D2 antibody. The authors have declared that no conflict of interest exists. The authors who have taken part in this study do not have a relationship with the manufacturers of the drugs involved either in the past or present and did not receive funding from the manufacturers to carry out their research. English grammar and language had been corrected by American Journal Experts ( This research has received funding from the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III of the Spanish Ministry for Health and Consumer Affairs (PI030042, PI030024 and PI070079).


  1. 1.
    Gholam PM, Flancbaum L, Machan JT, et al. Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol. 2007;102:399–408.CrossRefGoogle Scholar
  2. 2.
    Youssef WI, McCullough AJ. Steatohepatitis in obese individuals. Best Pract Res Clin Gastroenterol. 2002;16:733–47.CrossRefGoogle Scholar
  3. 3.
    Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of non-alcoholic fatty liver disease with the insulin resistance syndrome. Am J Med. 1999;107:450–5.CrossRefGoogle Scholar
  4. 4.
    Mofrad P, Contos MJ, Haque M, et al. Clinical and histological spectrum of non-alcoholic fatty liver disease associated with normal ALT. Hepatology. 2003;37:1286–92.CrossRefGoogle Scholar
  5. 5.
    Park HS, Kim MW, Shin ES. Effect of weight control on hepatic abnormalities in obese patients with fatty liver. J Korean Med Sci. 1995;10:414–21.CrossRefGoogle Scholar
  6. 6.
    Andersen T, Gluud C, Franzmann MB, et al. Hepatic effects of dietary weight loss in morbidly obese subjects. J Hepatol. 1991;12:224–9.CrossRefGoogle Scholar
  7. 7.
    Enerback S, Gimble JM. Lipoprotein lipase gene expression physiological regulators at the transcriptional and post-transcriptional level. Biochim Biophys Acta. 1993;1169:107–25.CrossRefGoogle Scholar
  8. 8.
    Beisiegel U, Weber W, Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1997;88:8342–6.CrossRefGoogle Scholar
  9. 9.
    Peinado-Onsurbe J, Soler C, Soley M, et al. Lipoprotein lipase and hepatic lipase activities are differentially regulated in isolated hepatocytes from neonatal rats. Biochim Biophys Acta. 1992;1125:82–9.CrossRefGoogle Scholar
  10. 10.
    Vilaró S, Llobera M, Bengtsson-Olivecrona G, et al. Synthesis of lipoprotein lipase in the liver of newborn rats and localization of the enzyme by immunofluorescence. Biochem J. 1988;249:549–56.CrossRefGoogle Scholar
  11. 11.
    Peinado-Onsurbe J, Staels B, Deeb S, et al. Neonatal extinction of liver lipoprotein lipase expression. Biochim Biophys Acta. 1992;1131:281–6.CrossRefGoogle Scholar
  12. 12.
    Gimenez-Llort L, Vilanova J, Skottova N, et al. Lipoprotein lipase enables triacylglycerol hydrolysis by perfused newborn rat liver. Am J Physiol. 1991;261:641–7.Google Scholar
  13. 13.
    Sabugal R, Robert MQ, Julve J, et al. Hepatic regeneration induces changes in lipoprotein lipase activity in several issues and its re-expression in the liver. Biochem J. 1996;318:597–602.CrossRefGoogle Scholar
  14. 14.
    Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15:5336–48.CrossRefGoogle Scholar
  15. 15.
    Vilaró S, Reina M, Ramirez I, et al. Intralipid administration induces a lipoprotein lipase-like activity in the livers of starved adult rats. Biochem J. 1986;236:273–8.CrossRefGoogle Scholar
  16. 16.
    Peinado-Onsurbe J, Blay M, Julve J, et al. Lipoprotein lipase and cholesterol transfer activities of lean and obese Zucker rats. Horm Metab Res. 2001;33:458–62.CrossRefGoogle Scholar
  17. 17.
    Westerbacka J, Kolak M, Kiviluoto T, et al. Genes involved in fatty acid partitioning and binding lipolysis monocyte/macrophage recruitment and inflammation are overexpressed in the human fatty liver of nsulin-resistant subjects. Diabetes. 2007;56:2759–65.CrossRefGoogle Scholar
  18. 18.
    Younossi ZM, Gorreta F, Ong JP, et al. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int. 2005;25:760–71.CrossRefGoogle Scholar
  19. 19.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.CrossRefGoogle Scholar
  20. 20.
    Ballart X, Siches M, Peinado-Onsurbe J, et al. Isoproterenol increases active lipoprotein lipase in adipocyte medium and in rat plasma. Biochimie. 2003;85:971–82.CrossRefGoogle Scholar
  21. 21.
    McCoy MG, Sun GS, Marchadier D, et al. Characterization of the lipolytic activity of endothelial lipase. J Lipid Res. 2002;43:921–9.PubMedGoogle Scholar
  22. 22.
    Rodríguez-Sureda V, Peinado-Onsurbe J. A procedure for measuring triacylglyceride and cholesterol content using a small amount of tissue. Anal Biochem. 2005;343:277–82.CrossRefGoogle Scholar
  23. 23.
    Brunt EM. Nonalcoholic steatohepatitis definition and pathology. Semin Liver Dis. 2001;21:3–16.CrossRefGoogle Scholar
  24. 24.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefGoogle Scholar
  25. 25.
    Vilaro S, Llobera M, Bengtsson-Olivecrona G, et al. Lipoprotein lipase uptake by the liver: localization turnover and metabolic role. Am J Physiol. 1988;254:711–22.Google Scholar
  26. 26.
    Kim JK, Fillmore JJ, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci U S A. 2001;98:7522–7.CrossRefGoogle Scholar
  27. 27.
    Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 2000;1483:37–57.CrossRefGoogle Scholar
  28. 28.
    Ishii M, Yoshioka Y, Ishida W, et al. Liver fat content measured by magnetic resonance spectroscopy at 3, 0 tesla independently correlates with plasminogen activator inhibitor-1 and body mass index in type 2 diabetic subjects. Tohoku J Exp Med. 2005;206:23–30.CrossRefGoogle Scholar
  29. 29.
    Gill HK, Wu GY. Non-alcoholic fatty liver disease and the metabolic syndrome effects of weight loss and a review of popular diets. Are low carbohydrate diets the answer? World J Gastroenterol. 2006;12:345–53.CrossRefGoogle Scholar
  30. 30.
    Day CP. Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol. 2002;16:663–8.CrossRefGoogle Scholar
  31. 31.
    Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Ret. 2002;23:201–9.CrossRefGoogle Scholar
  32. 32.
    Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20:351–8.PubMedGoogle Scholar
  33. 33.
    Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–52.CrossRefGoogle Scholar
  34. 34.
    Degrace P, Demizieux L, Gresti J, et al. Association of liver steatosis with lipid oversecretion and hypotriglyceridaemia in C57BL/6j mice fed trans-10cis-12-linoleic acid. FEBS Lett. 2003;546:335–9.CrossRefGoogle Scholar
  35. 35.
    Pardina E, Baena-Fustegueras JA, Catalán R, et al. Increased expression and activity of hepatic lipase in the liver of morbidly obese adult patients in relation to lipid content. Obes Surg. 2009. doi: 10.1007/s11695-008-9739-9.CrossRefGoogle Scholar
  36. 36.
    Luyckx FH, Lefebvre PJ, Scheen AJ. Non-alcoholic steatohepatitis association with obesity and insulin resistance and influence of weight loss. Diabetes Metab. 2000;26:98–106.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Blackburn GL, Mun EC. Effects of weight loss surgeries on liver disease. Semin Liver Dis. 2004;24:371–9.CrossRefGoogle Scholar
  38. 38.
    Hansen EN, Torquati A, Abumrad NN. Results of bariatric surgery. Annu Rev Nutr. 2006;26:481–511.CrossRefGoogle Scholar
  39. 39.
    Gleysteen J. Results of surgery long-term effects on hyperlipidemia. Am J Clin Nutr. 1992;55:591–3.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Eva Pardina
    • 1
  • Juan A. Baena-Fustegueras
    • 2
    • 3
  • Rafael Llamas
    • 1
  • Roberto Catalán
    • 2
    • 4
  • Rosa Galard
    • 2
    • 4
  • Albert Lecube
    • 2
    • 5
  • Jose M. Fort
    • 2
    • 3
  • Miquel Llobera
    • 1
  • Helena Allende
    • 2
    • 6
  • Víctor Vargas
    • 2
    • 6
  • Julia Peinado-Onsurbe
    • 1
  1. 1.Biochemistry and Molecular Biology Department, Biology FacultyBarcelona UniversityBarcelonaSpain
  2. 2.Institut de Recerca Vall D’HebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  3. 3.Endocrinology Surgery UnitInstituto de Salud Carlos III (ISCIII)MadridSpain
  4. 4.Biochemistry DepartmentInstituto de Salud Carlos III (ISCIII)MadridSpain
  5. 5.Diabetes Research Unit, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos III (ISCIII)MadridSpain
  6. 6.CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED)Instituto de Salud Carlos III (ISCIII)MadridSpain

Personalised recommendations