Obesity Surgery

, Volume 19, Issue 7, pp 894–904 | Cite as

Increased Expression and Activity of Hepatic Lipase in the Liver of Morbidly Obese Adult Patients in Relation to Lipid Content

  • Eva Pardina
  • Juan A. Baena-Fustegueras
  • Roberto Catalán
  • Rosa Galard
  • Albert Lecube
  • Jose M. Fort
  • Helena Allende
  • Víctor Vargas
  • Julia Peinado-OnsurbeEmail author
Research Article



The types and sources of lipid deposition in the liver of most patients with morbid obesity, as well as the effects of bariatric surgery, are discussed.


In 26 patients with morbid obesity who underwent bariatric surgery, we analyzed different kinds of lipids and hepatic lipase (HL) from both plasma and liver biopsies performed 12–18 months after surgery.


The HL activity and HL-mRNA in morbidly obese (MO) livers were high (258 ± 17 mU/g, and 4.5-fold, respectively); after surgery, the activity decreased (137 ± 15 mU/g, p < 0.001) but not the levels of HL-mRNA (4.3-fold). Plasma HL activity was also high (4.31 ± 0.94 mU/mL plasma), and it decreased during weight loss (2.01 ± 0.29 mU/mL, p < 0.01); moreover, it correlated (r = 0.3694, p < 0.05) with decreased liver HL activity. Adrenocorticotropic hormone in MO was higher (27 ± 3 pg/mL) than after surgery (13 ± 1 pg/mL, p < 0.001). All hepatic and plasma lipids were significantly increased in MO patients, but, after bariatric surgery, most of those parameters recovered or normalized. Liver HL activity correlated with total and esterified cholesterol (r = 0.4399, p < 0.001 and r = 0.4395, p < 0.01, respectively).


High HL in MO patients could allow for liver intake of cholesterol that could be re-exported to steroidogenic organs to synthesize steroidal hormones. A decrease of plasma HL during weight loss could be a good index for improvement of liver disease.


Metabolic syndrome Hepatic steatosis NAFLD HL LIPC ACTH 



nonalcoholic fatty liver disease


hepatic lipase


alanine aminotransferase


aspartate aminotransferase


homeostasis model assessment of insulin resistance



We are indebted to Drs. J. A. Baena, J. M. Fort, R. Catalán, R. Galard, A. Lecube, H. Allende, and V. Vargas for their outstanding work with subjects in the hospital and for their important contribution to this research. This research has received funding from the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III of the Spanish Ministry for Health and Consumer Affairs (PI030042, PI030024, and PI070079). E. Pardina was awarded grant by the same Institution.

Conflict of interest

The authors have declared that no conflict of interest exists.

The authors who have taken part in this study do not have a relationship with the manufacturers of the drugs involved either in the past or present and did not receive funding from the manufacturers to carry out their research.


  1. 1.
    Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. Gastroenterology 2002;122:1649–57.CrossRefGoogle Scholar
  2. 2.
    Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002;123:1705–25.CrossRefGoogle Scholar
  3. 3.
    Landin B, Nilsson A, Twu JS, et al. A role for hepatic lipase in chylomicron and high density lipoprotein phospholipid metabolism. J Lipid Res 1984;25:559–63.PubMedGoogle Scholar
  4. 4.
    Jansen H, van Tol A, Hülsmann WC. On the metabolic function of heparin-releasable liver lipase. Biochem Biophys Res Commun 1980;92:53–9.CrossRefGoogle Scholar
  5. 5.
    Marques-Vidal PC, Azéma X, Collet C, et al. Hepatic lipase promotes the uptake of HDL esterified cholesterol by the perfused rat liver: a study using reconstituted HDL particles of defined phospholipid composition. J Lipid Res 1994;35:373–84.PubMedGoogle Scholar
  6. 6.
    Barrans AX, Collet R, Barbaras B, et al. Hepatic lipase induces the formation of pre-β1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J Biol Chem 1994;269:11572–7.PubMedGoogle Scholar
  7. 7.
    Amar MJ, Dugi AK, Haudenschild CC, et al. Hepatic lipase facilitates the selective uptake of cholesteryl esters from remnant lipoproteins in apoE-deficient mice. J Lipid Res 1998;39:2436–42.PubMedGoogle Scholar
  8. 8.
    Bergeron NL, Kotite M, Verges P, et al. Lamellar lipoproteins uniquely contribute to hyperlipidemia in mice doubly deficient in apolipoprotein E and hepatic lipase. Proc Natl Acad Sci U S A 1998;95:15647–52.CrossRefGoogle Scholar
  9. 9.
    Doolittle M, Wong HH, Davis RC, et al. Synthesis of hepatic lipase in liver and extrahepatic tissues. J Lipid Res 1987;28:1326–34.PubMedGoogle Scholar
  10. 10.
    Galan X, Robert MQ, Llobera M, et al. Secretion of hepatic lipase by perfused liver and isolated hepatocytes. Lipids 2000;35:1017–26.CrossRefGoogle Scholar
  11. 11.
    Galan X, Peinado-Onsurbe J, Julve J, et al. Inactive hepatic lipase in rat plasma. J Lipid Res 2003;44:2250–6.CrossRefGoogle Scholar
  12. 12.
    Park HS, Kim MW, Shin ES. Effect of weight normal-weight on hepatic abnormalities in obese patients with fatty liver. J Korean Med Sci 1995;10:414–21.CrossRefGoogle Scholar
  13. 13.
    Andersen TC, Gluud M, Franzmann B, et al. Hepatic effects of dietary weight loss in morbidly obese subjects. J Hepatol 1991;12:224–9.CrossRefGoogle Scholar
  14. 14.
    DeWind LT, Payne JH. Intestinal bypass surgery for morbid obesity. Long-term results. JAMA 1976;236:2298–301.CrossRefGoogle Scholar
  15. 15.
    Sociedad Española para el estudio de la Obesidad (SEEDO). SEEDO’2000 consensus for the evaluation of overweight and obesity and the establishment of criteria for therapeutic intervention. Sociedad Española para el Estudio de la Obesidad. Med Clin 2000;115:587–97.CrossRefGoogle Scholar
  16. 16.
    Lohman TG, Roche AF, Martorell R, editors. In: Standardization of anthropometric measurements: The Airlie (VA) Consensus Conference. Champaign: Human Kinetics Publishers; 1988. p. 20–37.Google Scholar
  17. 17.
    Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 1991;65:105–14.CrossRefGoogle Scholar
  18. 18.
    Bonora ER, Micciolo AA, Ghiatas JL, et al. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 1995;44:1617–25.CrossRefGoogle Scholar
  19. 19.
    Wilmore JHP, Stanforth MA, Domenick J, et al. Reproducibility of anthropometric and body composition measurements: the HERITAGE Family Study. Int J Obes Relat Metab Disord 1997;21:297–303.CrossRefGoogle Scholar
  20. 20.
    Després JPC, Couillard J, Gagnon J, et al. Race visceral adipose tissue plasma lipids and lipoprotein lipase activity in men and women: the Health Risk Factors Exercise Training and Genetics (HERITAGE) family study. Arterioscler Thromb Vasc Biol 2000;20:1932–8.CrossRefGoogle Scholar
  21. 21.
    Ehnholm C, Kuusi T. Preparation characterization and measurement of hepatic lipase. Methods Enzymol 1986;129:716–38.CrossRefGoogle Scholar
  22. 22.
    Hultin M, Olivecrona G, Olivecrona T. Effect of protamine on lipoprotein lipase and hepatic lipase in rats. Biochem J 1994;304:959–66.CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Sureda V, Julve J, Llobera M, et al. Ultracentrifugation micromethod for preparation of small experimental animal lipoproteins. Anal Biochem 2002;303:73–7.CrossRefGoogle Scholar
  24. 24.
    Rodríguez-Sureda V, Peinado-Onsurbe J. A procedure for measuring triacylglyceride and cholesterol content using a small amount of tissue. Anal Biochem 2005;343:277–82.CrossRefGoogle Scholar
  25. 25.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.CrossRefGoogle Scholar
  26. 26.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.CrossRefGoogle Scholar
  27. 27.
    Vytasek R. A sensitive fluorimetric assay for the determination of DNA. Anal Biochem 1982;120:243–8.CrossRefGoogle Scholar
  28. 28.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium-thiocyanate–phenol–chloroform extraction. Anal Biochem 1987;162:156–9.CrossRefGoogle Scholar
  29. 29.
    Brunt EM. Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 2001;21:3–16.CrossRefGoogle Scholar
  30. 30.
    Perret BL, Mabile L, Martinez F, et al. Hepatic lipase: structure/function relationship synthesis and regulation. J Lipid Res 2002;43:1163–9.PubMedGoogle Scholar
  31. 31.
    Deeb S, Zambon SA, Carr MC, et al. Hepatic lipase and dyslipidemia: interactions among genetic variants obesity gender and diet. J Lipid Res 2003;44:1279–86.CrossRefGoogle Scholar
  32. 32.
    Emmison N, Zammit VA, Agius L. Triacylglycerol accumulation and secretion in hepatocyte cultures. Effects of insulin albumin and Triton WR 1339. Biochem J 1992;285:655–60.CrossRefGoogle Scholar
  33. 33.
    Yoon TH, Yamada N, Ishibashi S. The release of hepatic triglyceride lipase from rat monolayered hepatocytes in primary culture. Endocrinol Jpn 1990;37:437–42.CrossRefGoogle Scholar
  34. 34.
    Morita T, Sakata K, Kanagawa A, et al. Stimulatory release of hepatic lipase activity from cultured rat hepatocytes by sodium orthovanadate: rapid increase in cyclic adenosine monophosphate content. Biol Pharm Bull 1994;17:577–80.CrossRefGoogle Scholar
  35. 35.
    Sibley SD, Palmer JP, Hirsch IB, et al. Visceral obesity hepatic lipase activity and dyslipidemia in type 1 diabetes. J Clin Endocrinol Metab 2003;88:3379–84.CrossRefGoogle Scholar
  36. 36.
    Sabugal R, Julve J, Llobera M, et al. Decrease in the expression of hepatic lipase activity following partial hepatectomy. Biochim Biophys Acta 1996;1302:193–8.CrossRefGoogle Scholar
  37. 37.
    Rodríguez-Sureda V, López-Tejero MD, Llobera M, et al. Social stress profoundly affects lipid metabolism: over-expression of SR-BI in liver and changes in lipids and lipases in plasma and tissues of stressed mice. Atherosclerosis 2007;195:57–65.CrossRefGoogle Scholar
  38. 38.
    Verhoeven A, Carling JD, Jansen H. Hepatic lipase gene is transcribed in rat adrenals into a truncated mRNA. J Lipid Res 1994;35:966–75.PubMedGoogle Scholar
  39. 39.
    Reynolds RM, Walker BR, Syddall HE, et al. Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab 2001;86:245–50.PubMedGoogle Scholar
  40. 40.
    Rask ET, Olsson S, Söderberg R, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001;86:1418–21.CrossRefGoogle Scholar
  41. 41.
    Andrew RD, Phillips I, Walker BR. Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 1998;83:1806–9.CrossRefGoogle Scholar
  42. 42.
    Galan X, Llobera M, Ramírez I. Lipoprotein lipase and hepatic lipase in Wistar and Sprague-Dawley rat tissues. Differences in the effects of gender and fasting. Lipids 1994;29:333–6.CrossRefGoogle Scholar
  43. 43.
    Gibbons G, Islam FK, Pease RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta 2000;1483:37–57.CrossRefGoogle Scholar
  44. 44.
    Ishii MY, Yoshioka W, Ishida Y, et al. Liver fat content measured by magnetic resonance spectroscopy at 3.0 Tesla independently correlates with plasminogen activator inhibitor-1 and body mass index in type 2 diabetic subjects. Tohoku J Exp Med 2005;206:23–30.CrossRefGoogle Scholar
  45. 45.
    Degrace PL, Demizieux J, Gresti JM, et al. Association of liver steatosis with lipid oversecretion and hypotriglyceridaemia in C57BL/6j mice fed trans-10cis-12-linoleic acid. FEBS Lett 2003;546:335–9.CrossRefGoogle Scholar
  46. 46.
    Chang C, Garcia-Garcia AB, Hamilton E, et al. Metabolic syndrome phenotype in very obese women. Metab Syndr Relat Disord 2007;5:3–12.CrossRefGoogle Scholar
  47. 47.
    Luyckx FH, Lefebvre PJ, Scheen AJ. Non-alcoholic steatohepatitis: association with obesity and insulin resistance and influence of weight loss. Diabetes Metab 2000;26:98–106.PubMedGoogle Scholar
  48. 48.
    Blackburn GL, Mun EC. Effects of weight loss surgeries on liver disease. Semin Liver Dis 2004;24:371–9.CrossRefGoogle Scholar
  49. 49.
    Hansen E, Torquati NA, Abumrad NN. Results of bariatric surgery. Annu Rev Nutr 2006;26:481–511.CrossRefGoogle Scholar
  50. 50.
    Gleysteen J. Results of surgery: long-term effects on hyperlipidemia. Am J Clin Nutr 1992;55:591–3.CrossRefGoogle Scholar
  51. 51.
    Gill HK, Wu GY. Non-alcoholic fatty liver disease and the metabolic syndrome: effects of weight loss and a review of popular diets. Are low carbohydrate diets the answer? World J Gastroenterol 2006;12:345–53.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Eva Pardina
    • 1
  • Juan A. Baena-Fustegueras
    • 2
  • Roberto Catalán
    • 3
  • Rosa Galard
    • 3
  • Albert Lecube
    • 4
  • Jose M. Fort
    • 2
  • Helena Allende
    • 5
  • Víctor Vargas
    • 6
  • Julia Peinado-Onsurbe
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Endocrinology Surgery Unit, Hospital Universitari Vall D’hebron, Institut De Recerca Vall D’hebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  3. 3.Biochemistry Department, Hospital Universitari Vall D’hebron, Institut De Recerca Vall D’hebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  4. 4.CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Diabetes Research Unit, Institut de Recerca Vall D’HebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  5. 5.Pathology Division, Hospital Universitari Vall D’hebron, Institut De Recerca Vall D’hebronUniversitat Autònoma De BarcelonaBarcelonaSpain
  6. 6.Liver Unit, Hospital Universitari Vall D’hebron, Institut De Recerca Vall D’hebronUniversitat Autònoma De BarcelonaBarcelonaSpain

Personalised recommendations