Obesity Surgery

, Volume 18, Issue 8, pp 1028–1034 | Cite as

Nutritional Deficiencies in Morbidly Obese Patients: A New Form of Malnutrition?

Part B: Minerals
  • Orit Kaidar-Person
  • Benjamin Person
  • Samuel Szomstein
  • Raul J. RosenthalEmail author


Even though in the Western world there is almost no limitation to a wide variety of food supply, nutritional deficiencies can be found in both normal-weight population and in the obese population. In this review, we examine the prevalence and manifestations of various mineral deficiencies in obese patients.


Mineral Obesity Deficiency Metabolic syndrome 


  1. 1.
    Gibson RS. The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr Bull. 2007;28(1):S77–100.PubMedGoogle Scholar
  2. 2.
    Bringhurst RF, Demay MB, Krane SM, Kronenberg HM. Bone and mineral metabolisim in health and disease. In: Kasper DL, Fauci AS, Longo DL, Braunwald E, Hauser SL, Jameson JL, editors. Harrison’s principles of internal medicine. Vol 2. 16th ed. McGraw-Hill: Medical Publishing Devision; 2005. p. 2244–6.Google Scholar
  3. 3.
    Reams SM. Patient education; foods high in magnesium. J Renal Nutr. 2002;12(1):60–4.CrossRefGoogle Scholar
  4. 4.
    Kiss SA, Forster T, Dongo A. Absorption and effect of the magnesium content of a mineral water in the human body. J Am Coll Nutr. 2004;23(6):758S–62S.PubMedGoogle Scholar
  5. 5.
    Kishore B, Thurlow V, Kessel B. Hypokalaemic rhabdomyolysis. Ann Clin Biochem. 2007;44(Pt 3):308–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Beckett AG, Lewis JG. Serum magnesium in diabetes mellitus. Clin Sci. 1959;18:597–604.PubMedGoogle Scholar
  7. 7.
    Kekwick A, Pawan GL, Chalmers TM. Resistance to ketosis in obese subjects. Lancet. 1959;2:1157–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension. 1993;21(6 Pt 2):1024–9.PubMedGoogle Scholar
  9. 9.
    Rayssiguier Y, Gueux E, Nowacki W, Rock E, Mazur A. High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation. Magnes Res. 2006;19(4):237–43.PubMedGoogle Scholar
  10. 10.
    Sontia B, Touyz RM. Role of magnesium in hypertension. Arch Biochem Biophys. 2007;458(1):33–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys. 2007;458(1):40–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Sales CH, Pedrosa Lde F. Magnesium and diabetes mellitus: their relation. Clin Nutr. 2006;25(4):554–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, et al. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care. 2005;28(5):1175–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Walti MK, Zimmermann MB, Spinas GA, Jacob S, Hurrell RF. Dietary magnesium intake in type 2 diabetes. Eur J Clin Nutr. 2002;56(5):409–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheehan JP. Magnesium deficiency and diabetes mellitus. Magnes Trace Elem. 1991–1992;10(2–4):215–9.Google Scholar
  16. 16.
    Gillis L, Gillis A. Nutrient inadequacy in obese and non-obese youth. Can J Diet Pract Res. 2005;66(4):237–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomson CD. Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr. 2004;58:391–402.PubMedCrossRefGoogle Scholar
  18. 18.
    Arthur JR. The role of selenium in thyroid hormone metabolism. Can J Physiol Pharm. 1991;69:1648–52.Google Scholar
  19. 19.
    Levander OA. Nutrition and newly emerging viral diseases: an overview. J Nutr. 1997;127:948S–50S.PubMedGoogle Scholar
  20. 20.
    Longnecker MP, Taylor PR, Levander OA, Howe M, Veillon C, McAdam PA, et al. Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. Am J Clin Nutr. 1991;53:1288–94.PubMedGoogle Scholar
  21. 21.
    Madan AK, Orth WS, Tichansky DS, Ternovits CA. Vitamin and trace mineral levels after laparoscopic gastric bypass. Obes Surg. 2006;16(5):603–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Kimmons JE, Blanck HM, Tohill BC, Zhang J, Khan LK. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed. 2006;8(4):59.PubMedGoogle Scholar
  23. 23.
    Ford ES, Smith SJ, Stroup DF, Steinberg KK, Mueller PW, Thacker SB. Homocysteine and cardiovascular disease: a systematic review of the evidence with special emphasis on case-control studies and nested case-control studies. Int J Epidemiol. 2002;31:59–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Gonzalez S, Huerta JM, Alvarez-Uria J, Fernandez S, Patterson AM, Lasheras C. Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J Nutr. 2004;134:1736–40.PubMedGoogle Scholar
  25. 25.
    Jacobs ET, Jiang R, Alberts DS, et al. Selenium and colorectal adenoma: results of a pooled analysis. J Natl Cancer Inst. 2004;96:1669–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Combs GF Jr. Status of selenium in prostate cancer prevention. Br J Cancer. 2004;91:195–9.PubMedGoogle Scholar
  27. 27.
    Goldhaber SB. Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol. 2003;38:232–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Miret S, Simpson RJ, McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr. 2003;23:283–301.PubMedCrossRefGoogle Scholar
  29. 29.
    Killip S, Bennett JM, Chambers MD. Iron deficiency anemia. Am Fam Phys. 2007;75(5):671–8.Google Scholar
  30. 30.
    Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord. 2003;27(3):416–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics. 2004;114(1):104–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Flancbaum L, Belsley S, Drake V, Colarusso T, Tayler E. Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity. J Gastrointest Surg. 2006;10(7):1033–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Pittler MH, Ernst E. Dietary supplements for body-weight reduction: a systematic review. Am J Clin Nutr. 2004;79(4):529–36.PubMedGoogle Scholar
  34. 34.
    Vincent JB. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003;33(3):213–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Wani S, Weskamp C, Marple J, Spry L. Acute tubular necrosis associated with chromium picolinate-containing dietary supplement. Ann Pharmacother. 2006;40(3):563–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Ravina A, Slezak L, Mirsky N, Bryden NA, Anderson RA. Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium. Diabet Med. 1999;16(2):164–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson RA. Chromium, glucose tolerance, and diabetes. Biol Trace Elem Res. 1992;32:19–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr. 1977;30(4):531–8.PubMedGoogle Scholar
  39. 39.
    Rukgauer M, Zeyfang A. Chromium determinations in blood cells: clinical relevance demonstrated in patients with diabetes mellitus type 2. Biol Trace Elem Res. 2002;86(3):193–202.PubMedCrossRefGoogle Scholar
  40. 40.
    Speetjens JK, Collins RA, Vincent JB, Woski SA. The nutritional supplement chromium(III) tris(picolinate) cleaves DNA. Chem Res Toxicol. 1999;12(6):483–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Stearns DM. Is chromium a trace essential metal? Biofactors. 2000;11(3):149–62.PubMedGoogle Scholar
  42. 42.
    Althuis MD, Jordan NE, Ludington EA, Wittes JT. Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr. 2002;76(1):148–55.PubMedGoogle Scholar
  43. 43.
    Vincent JB. The bioinorganic chemistry of chromium(III). Polyhedron. 2001;20(1–2):1–26.CrossRefGoogle Scholar
  44. 44.
    Diaz ML, Watkins BA, Li Y, Anderson RA, Campbell WW. Chromium picolinate and conjugated linoleic acid do not synergistically influence diet- and exercise-induced changes in body composition and health indexes in overweight women. J Nutr Biochem. 2008;19(1):61–8.Google Scholar
  45. 45.
    Volpe SL, Huang HW, Larpadisorn K, Lesser II. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001;20(4):293–306.PubMedGoogle Scholar
  46. 46.
    Sandstead HH. Zinc nutrition in the United States. Am J Clin Nutr. 1973;26(11):1251–60.PubMedGoogle Scholar
  47. 47.
    Sandstead HH. Zinc as an unrecognized limiting nutrient. Am J Clin Nutr. 1973;26(8):790–1.PubMedGoogle Scholar
  48. 48.
    Jeejeebhoy KN. Human zinc deficiency. Nutr Clin Pract. 2007; 22(1):65–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Myung SJ, Yang SK, Jung HY, Jung SA, Kang GH, Ha HK, et al. Zinc deficiency manifested by dermatitis and visual dysfunction in a patient with Crohn’s disease. J Gastroenterol. 1998;33(6):876–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Boosalis MG, Solem LD, Cerra FB, Konstantinides F, Ahrenholz DH, McCall JT, et al. Increased urinary zinc excretion after thermal injury. J Lab Clin Med. 1991;118(6):538–45.PubMedGoogle Scholar
  51. 51.
    Fawaz F. Zinc deficiency in surgical patients: a clinical study. JPEN J Parenter Enteral Nutr. 1985;9(3):364–9.PubMedCrossRefGoogle Scholar
  52. 52.
    USDA National Nutrient Database for Standard Reference: Last accessed: July 6, 2007.
  53. 53.
    Sandstrom B. Bioavailability of zinc. Eur J Clin Nutr. 1997;51 Suppl 1:S17–9.PubMedGoogle Scholar
  54. 54.
    Wise A. Phytate and zinc bioavailability. Int J Food Sci Nutr. 1995;46:53–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Krasovec M, Frenk E. Acrodermatitis enteropathica secondary to Crohn’s disease. Dermatology. 1996;193:361–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Smidt K, Pedersen SB, Brock B, Schmitz O, Fisker S, Bendix J, et al. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol. 2007;264(1–2):68–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Beletate V, El Dib RP, Atallah AN. Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;24(1):CD005525.Google Scholar
  58. 58.
    Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, et al. Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun. 2006;351(1):165–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Marreiro Ddo N, Geloneze B, Tambascia MA, Lerario AC, Halpern A, Cozzolino SM. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res. 2006;112(2):109–18.CrossRefGoogle Scholar
  60. 60.
    Tubek S. Urinary zinc excretion is normalized in primary arterial hypertension after perindopril treatment. Biol Trace Elem Res. 2006;114(1–3):127–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Tubek S. Increased absorption of zinc from alimentary tract in primary arterial hypertension. Biol Trace Elem Res. 2001;83(1):31–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ishikawa Y, Kudo H, Kagawa Y, Sakamoto S. Increased plasma levels of zinc in obese adult females on a weight-loss program based on a hypocaloric balanced diet. In Vivo. 2005;19(6):1035–7.PubMedGoogle Scholar
  63. 63.
    Di Martino G, Matera MG, De Martino B, Vacca C, Di Martino S, Rossi F. Relationship between zinc and obesity. J Med. 1993; 24(2–3):177–83.PubMedGoogle Scholar
  64. 64.
    Marreiro Ddo N, Fisberg M, Cozzolino SM. Zinc nutritional status and its relationships with hyperinsulinemia in obese children and adolescents. Biol Trace Elem Res. 2004;100(2):137–49.CrossRefGoogle Scholar
  65. 65.
    Marreiro Ddo N, Fisberg M, Cozzolino SM. Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res. 2002;86(2):107–22.CrossRefGoogle Scholar
  66. 66.
    Chen MD, Lin PY, Sheu WH. Zinc status in plasma of obese individuals during glucose administration. Biol Trace Elem Res. 1997;60(1–2):123–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen MD, Lin PY, Lin WH, Cheng V. Zinc in hair and serum of obese individuals in Taiwan. Am J Clin Nutr. 1988;48(5):1307–9.PubMedGoogle Scholar
  68. 68.
    Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, et al. Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun. 2006;351(1):165–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Johnson FK, Johnson RA, Durante W, Jackson KE, Stevenson BK, Peyton KJ. Metabolic syndrome increases endogenous carbon monoxide production to promote hypertension and endothelial dysfunction in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R601–8.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Orit Kaidar-Person
    • 1
    • 2
  • Benjamin Person
    • 2
  • Samuel Szomstein
    • 1
  • Raul J. Rosenthal
    • 1
    Email author
  1. 1.The Bariatric and Metabolic Institute, Section of Minimally Invasive and Endoscopic SurgeryCleveland Clinic FloridaWestonUSA
  2. 2.Department of Colorectal SurgeryCleveland Clinic FloridaWestonUSA

Personalised recommendations