Skip to main content

Advertisement

Log in

Nanomaterials modified electrodes for electrochemical detection of Sudan I in food

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

There is an urgent need to develop a highly sensitive detection system for detecting trace amount of food contaminants. The environmental analysis of Sudan I, a carcinogenic azo-dye, has attracted wide attention due to their increasing levels and high toxicities. Several methods have been developed to detect the presence of this compound. For example, analytical methods based on chromatography and spectroscopy has attracted significant attentions for the determination of Sudan I. However, these methods require complex separation processes, expensive equipment, toxic chemicals, long analysis times, and expert staff. Electroanalytical methods can be considered as promising alternative techniques due to their advantages such as simplicity, low cost, high sensitivity, and fast analysis speed. Electroanalytical methods have been also investigated for the determination of Sudan I. Chemically modified electrodes have been widely used to counter the problems of poor sensitivity and selectivity faced at bare electrodes. We have reviewed the materials that have been extensively used to fabricate modified electrode surfaces for detection of Sudan I. The characteristics of the materials that improve the electrocatalytic activity of the modified surfaces are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IARC:

International Agency for Research on Cancer

HPLC:

High-Performance Liquid Chromatography

CE:

Capillary electrophoresis

ILs:

Ionic liquids

CNTs:

Carbon nanotubes

NPs:

Nanoparticles

SWCNTs:

Single-walled carbon nanotubes

MWCNTs:

Multi-walled carbon nanotubes

GO:

Graphene oxide

rGO:

Reduced GO

MNPs:

Magnetic NPs

QDs:

Quantum dots

CPEs:

Carbon paste electrodes

AA:

Ascorbic acid

(XRD):

X-ray diffraction

DEDED:

(9,10-Dihydro-9,10-ethanoanthracene-11,12 dicarboximido)4-ethylbenzene-1,2-diol

SWV:

Square-wave voltammetry

LOD:

Limit of detection

CV:

Cyclic voltammetry

EIS:

Electro-chemical impedance spectroscopy

BPA:

Bisphenol A

GCE:

Glassy carbon electrode

3DNPC:

3D N-doped porous carbon

ß-CD:

ß-Cyclodextrin

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

EDS:

Energy dispersive X-ray spectroscopy

CTAB:

Cetyltrimethyl-ammonium bromide

DPV:

Differential pulse voltammetry

SDS:

Sodium dodecyl sulfonate

PBS:

Phosphate buffer solution

GNSs:

Graphene nanosheets

FT-IR:

Fourier transform infrared spectroscopy

MIP:

Molecularly imprinted polymer

LSV:

Linear sweep voltammetric

DMF:

N,N-dimethylformamide

XPS:

X-ray photoelectron spectroscopy

PIL:

Poly(IL)

ER-GO:

Electro-chemically reduced graphene oxide

PASA:

Poly(amino-sulfonic acid)

SPEs:

Screen printed electrodes

References

  1. Y. An, L. Jiang, J. Cao, C. Geng, L. Zhong, Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 627, 164–170 (2007)

    Article  CAS  Google Scholar 

  2. P. Møller, H. Wallin, Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat. Res-Rev Mutat. 462, 13–30 (2000)

    Article  Google Scholar 

  3. F. Capitan, L.F. Capitán-Vallvey, M.D. Fernandez, I. De Orbe, R. Avidad, Determination of colorant matters mixtures in foods by solid-phase spectrophotometry. Anal. Chim. Acta 331, 141–148 (1996)

    Article  CAS  Google Scholar 

  4. L. Di Donna, L. Maiuolo, F. Mazzotti, D. De Luca, G. Sindona, Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Anal. Chem. 76, 5104–5108 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. V. Vinothkumar, A. Sangili, S.M. Chen, T.W. Chen, A.M.V. Sethupathi, Voltammetric determination of sudan I by using Bi2WO6 nanosheets modified glassy carbon electrode. Int. J. Electrochem. Sci. 15, 2414–2429 (2020)

    Article  CAS  Google Scholar 

  6. J. Zhang, M. Wang, S. Chao, W. Wang, Y. He, Z. Chen, Electrochemical detection of Sudan I by using an expanded graphite paste electrode. J. Electroanal. Chem. 685, 47–52 (2012)

    Article  CAS  Google Scholar 

  7. M. Stiborová, B. Asfaw, P. Anzenbacher, L. Lešeticky, P. Hodek, The first identification of the benzenediazonium ion formation from a non-aminoazo dye, 1-phenylazo-2-hydroxynaphthalene (Sudan I) by microsomes of rat livers. Cancer Lett. 40, 319–326 (1988)

    Article  PubMed  Google Scholar 

  8. C.V. Di Anibal, M. Odena, I. Ruisánchez, M.P. Callao, Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV–visible spectroscopy and multivariate classification techniques. Talanta 79, 887–892 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. C. Tatebe, T. Ohtsuki, N. Otsuki, H. Kubota, K. Sato, H. Akiyama, Y. Kawamura, Extraction method and determination of Sudan I present in sunset yellow FCF by isocratic high-performance liquid chromatography. Am. J. Anal. Chem. 3, 570–573 (2012)

    Article  CAS  Google Scholar 

  10. D. Taverna, L.D. Donna, F. Mazzotti, B. Policicchio, G. Sindona, High-throughput determination of Sudan Azo-dyes within powdered chili pepper by paper spray mass spectrometry. J. Mass Spectrom. 48, 544–547 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. X.Y. Xu, X.G. Tian, L.G. Cai, Z.L. Xu, H.T. Lei, H. Wang, Y.M. Sun, Molecularly imprinted polymer based surface plasmon resonance sensors for detection of Sudan dyes. Anal. Methods 6, 3751–3757 (2014)

    Article  CAS  Google Scholar 

  12. X. Ye, J. Zhang, H. Chen, X. Wang, F. Huang, Fluorescent nanomicelles for selective detection of sudan dye in pluronic F127 aqueous media. ACS Appl. Mater. Interfaces. 6, 5113–5121 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. E. Mejia, Y. Ding, M.F. Mora, C.D. Garcia, Determination of banned sudan dyes in chili powder by capillary electrophoresis. Food Chem. 102, 1027–1033 (2007)

    Article  CAS  Google Scholar 

  14. Y. Zhang, Z. Zhang, Y. Sun, Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO − -luminol chemiluminescence detection. J. Chromatogr. A 1129, 34–40 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. P.L. Wu, F.Y. Li, Z.C. Huang, Q. Zhang, Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal. Chem. 78, 5570–5577 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, Y.G. Ivanushko, A.V. Velyka, A.F. Molodianu, L. Vaz, Electrochemical determination of sudan dyes and two manner to realize it: a theoretical investigation. Lett. Appl. NanoBioSci. 9, 1451–1458 (2020)

    Article  Google Scholar 

  17. A. Ondrackova, M. Stiborova, L. Havran, K. A. R. O. L. I. N. A. Schwarzova-Peckova, M. Fojta, Electrochemistry of Sudan I and its derivates in aqueous media. In: 16th International Students Conference “Modern Anal. Chem. 110 (2020)

  18. X. Li, X. Sun, M. Li, Detection of Sudan I in foods by a MOF-5/MWCNT modified electrode. Chem. Select 5, 12777–12784 (2020)

    CAS  Google Scholar 

  19. C. Yang, J. Zhao, J. Xu, C. Hu, S. Hu, A highly sensitive electrochemical method for the determination of Sudan I at polyvinylpyrrolidone modified acetylene black paste electrode based on enhancement effect of sodium dodecyl sulphate. J. Environ. Anal. Chem. 89, 233–244 (2009)

    Article  CAS  Google Scholar 

  20. Y. Wang, Simultaneous determination of uric acid, xanthine and hypoxanthine at poly (pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloids Surf. B 88, 614–621 (2011)

    Article  CAS  Google Scholar 

  21. C. Xiao, X. Chu, Y. Yang, X. Li, X. Zhang, J. Chen, Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens. Bioelectron. 26, 2934–2939 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Z. Xue, Y. Feng, H. Guo, C. Hu, A.M.M. Idris, J. Li, X. Lu, A novel electrocatalytic platform for separation of the overlapping voltammetric responses of AA. DA and UA. RSC Adv. 4, 5849–5852 (2014)

    Article  CAS  Google Scholar 

  23. N. Baig, M. Sajid, T.A. Saleh, Recent trends in nanomaterial-modified electrodes for electroanalytical applications. Trends Anal. Chem. 111, 47–61 (2019)

    Article  CAS  Google Scholar 

  24. M. Ghanei-Motlagh, M. Baghayeri, Determination of trace Tl(I) by differential pulse anodic stripping voltammetry using a novel modified carbon paste electrode. J. Electrochem. Soc. 167, (2020)

    Article  CAS  Google Scholar 

  25. M. Nodehi, M. Baghayeri, R. Ansari, H. Veisi, Electrochemical quantification of 17α–Ethinylestradiol in biological samples using a Au/Fe3O4@TA/MWNT/GCE sensor. Mater. Chem. Phys. 244, (2020)

    Article  CAS  Google Scholar 

  26. M. Nodehi, M. Baghayeri, R. Behazin, H. Veisi, Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem. J. 162, (2021)

    Article  CAS  Google Scholar 

  27. M. Baghayeri, M. Ghanei-Motlagh, R. Tayebee, M. Fayazi, F. Narenji, Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As (III) in water resources. Anal. Chim. Acta 1099, 60–67 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. M. Ghanei-Motlagh, M.A. Taher, M. Fayazi, M. Baghayeri, A. Hosseinifar, Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J. Electrochem. Soc. 166, B367 (2019)

    Article  CAS  Google Scholar 

  29. M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Label-free electrochemical bisphenol A aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanalysis 30, 2160–2166 (2018)

    Article  CAS  Google Scholar 

  30. M. Baghayeri, R. Ansari, M. Nodehi, H. Veisi, Designing and fabrication of a novel gold nanocomposite structure: application in electrochemical sensing of bisphenol A. Int. J. Environ. Anal. Chem. 98, 874–888 (2018)

    Article  CAS  Google Scholar 

  31. M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Microchim. Acta 185, 1–9 (2018)

    Article  CAS  Google Scholar 

  32. M. Baghayeri, H. Beitollahi, A. Akbari, S. Farhadi, Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine. Russ. J. Electrochem. 54, 292–301 (2018)

    Article  CAS  Google Scholar 

  33. M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23, 1553–1562 (2017)

    Article  CAS  Google Scholar 

  34. M. Baghayeri, A. Amiri, M. Fayazi, M. Nodehi, A. Esmaeelnia, Electrochemical detection of bisphenol A on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater. Chem. Phys. 261, (2021)

    Article  CAS  Google Scholar 

  35. M. Baghayeri, A. Amiri, B.S. Moghaddam, M. Nodehi, Cu-Based MOF for simultaneous determination of trace Tl(I) and Hg(II) by stripping voltammetry. J. Electrochem. Soc. 167, (2020)

    Article  CAS  Google Scholar 

  36. M. Baghayeri, H. Veisi, Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron. 74, 190–198 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. M. Baghayeri, E.N. Zare, M.M. Lakouraj, A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@Fe3O4 nanocomposite. Biosens. Bioelectron. 55, 259–265 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, S. Malekmohammadi, Ind. Eng. Chem. Res. 60(2), 816–823 (2021)

    Article  CAS  Google Scholar 

  39. C.I.L. Justino, T.A.P. Rocha-Santos, S. Cardoso, A.C. Duarte, Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrACTrend. Anal. Chem. 47, 27–36 (2013)

    Article  CAS  Google Scholar 

  40. C. Fenzl, T. Hirsch, A.J. Baeumner, Nanomaterials as versatile tools for signal amplification in (bio) analytical applications. TrAC Trend. Anal. Chem. 79, 306–316 (2016)

    Article  CAS  Google Scholar 

  41. W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010)

    Article  CAS  Google Scholar 

  42. S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Sheu Biotechnol. Adv. 29, 169–188 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. W. Sun, J. Hu, Voltammetric determination of theophylline in pharmaceutical formulations using aligned carbon nanotubes (ACNTs) film modified electrode. J. Anal. Chem. 68, 694–699 (2013)

    Article  CAS  Google Scholar 

  44. H. Filik, A.A. Avan, S. Aydar, Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode. Arab. J. Chem. 9, 471–480 (2016)

    Article  CAS  Google Scholar 

  45. H.R. Zare, Z. Sobhani, M. Mazloum-Ardakani, Electrochemical behavior of electrodeposited rutin film on a multi-wall carbon nanotubes modified glassy carbon electrode: Improvement of the electrochemical reversibility and its application as a hydrazine sensor. J. Solid State Electrochem. 11, 971 (2007)

    Article  CAS  Google Scholar 

  46. J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50, 3049–3060 (2005)

    Article  CAS  Google Scholar 

  47. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. P. Bollella, G. Fusco, C. Tortolini, G. Sanzo, G. Favero, L. Gorton, R. Antiochia, Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 89, 152–166 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. E.B. Bahadir, M.K. Sezgintürk, Applications of graphene in electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 76, 1–14 (2016)

    Article  CAS  Google Scholar 

  50. X.M. Chen, G.H. Wu, Y.Q. Jiang, Y.R. Wang, X. Chen, Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136, 4631–6440 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review. Anal. Bioanal. Chem. 406, 3957–3975 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. X. Deng, H. Tang, J. Jiang, Recent progress in graphene-material-based optical sensors. Anal. Bioanal. Chem. 406, 6903–6916 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. F.W. Campbell, R.G. Compton, The use of nanoparticles in electroanalysis: an updated review. Anal. Bioanal. Chem. 396, 241–259 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C.M. Cirtiu, M. Sillanpää, Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trend. Anal. Chem. 30, 1704–1715 (2011)

    Article  CAS  Google Scholar 

  56. V. Pareek, A. Bhargava, R. Gupta, N. Jain, J. Panwar, Synthesis and applications of noble Metal nanoparticles: a review. Adv. Sci. Eng. Med. 9, 527–544 (2017)

    Article  CAS  Google Scholar 

  57. T.A. Rocha-Santos, Sensors and biosensors based on magnetic nanoparticles. TrAC Trend. Anal. Chem. 62, 28–36 (2014)

    Article  CAS  Google Scholar 

  58. J. Ma, S. Guo, X. Guo, H. Ge, A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity. Appl. Surf. Sci. 353, 1117–1125 (2015)

    Article  CAS  Google Scholar 

  59. Y. Wang, S. Wang, H. Niu, Y. Ma, T. Zeng, Y. Cai, Z. Meng, Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A 1283, 20–26 (2013)

    Article  CAS  PubMed  Google Scholar 

  60. A.A. Ensafi, H.A. Alinajafi, M. Jafari-Asl, B. Rezaei, F. Ghazaei, Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2. Mater. Sci. Eng., C 60, 276–284 (2016)

    Article  CAS  Google Scholar 

  61. Z. Eshaghzade, E. Pajootan, H. Bahrami, M. Arami, Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J. Taiwan Inst. Chem. Eng. 71, 91–105 (2017)

    Article  CAS  Google Scholar 

  62. C.T. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, L. Mocan, Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine 12, 5421 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Today Chem. 10, 221–258 (2018)

    CAS  Google Scholar 

  64. Z. Ranjbar-Navazi, Y. Omidi, M. Eskandani, S. Davaran, Cadmium-free quantum dot-based theranostics. TrAC Trends Anal. Chem. 118, 386–400 (2019)

    Article  CAS  Google Scholar 

  65. K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2, 419–433 (1990)

    Article  CAS  Google Scholar 

  66. H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 80, 9848–9851 (2008)

    Article  CAS  PubMed  Google Scholar 

  67. H. Karimi-Maleh, M. Moazampour, M. Yoosefian, A.L. Sanati, F. Tahernejad-Javazmi, M. Mahani, An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and Sudan I in food samples. Food Anal. Methods 7, 2169–2176 (2014)

    Article  Google Scholar 

  68. M. Elyasi, M.A. Khalilzadeh, H. Karimi-Maleh, High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem. 141, 4311–4317 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. M. Najafi, M.A. Khalilzadeh, H. Karimi-Maleh, A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem. 158, 125–131 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. J.B. Raoof, N. Teymoori, M.A. Khalilzadeh, ZnO nanoparticle ionic liquids carbon paste electrode as a voltammetric sensor for determination of sudan I in the presence of Vitamin B 6 in food samples. Food Anal. Methods 8, 885–892 (2015)

    Article  Google Scholar 

  71. B.S. Jilani, P. Malathesh, C.D. Mruthyunjayachari, K.V. Reddy, Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: a voltammetric study. Mater. Chem. Phys. 239, (2020)

    Article  CAS  Google Scholar 

  72. Q. Ye, X. Chen, J. Yang, D. Wu, J. Ma, Y. Kong, Fabrication of CuO nanoparticles-decorated 3D N-doped porous carbon as electrochemical sensing platform for the detection of Sudan I. Food Chem. 287, 375–381 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. S. Palanisamy, K. Thangavelu, S.M. Chen, V. Velusamy, S.K. Ramaraj, Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. J. Electroanal. Chem. 794, 64–70 (2017)

    Article  CAS  Google Scholar 

  74. L. Li, Y. Zhang, T. Shang, H. Guo, X. Liu, X. Lu, Electrochemical study of Sudan I at ionic liquid-reduced graphene oxide modified electrode. J. Electroanal. Chem. 781, 218–221 (2016)

    Article  CAS  Google Scholar 

  75. J. Li, H. Feng, J. Li, Y. Feng, Y. Zhang, D. Qian, Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I. Electrochim. Acta 167, 226–236 (2015)

    Article  CAS  Google Scholar 

  76. E. Prabakaran, K. Pandian, Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem. 166, 198–205 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. L. Wang, R. Yang, J. Li, L. Qu, P.D.B. Harrington, High-sensitive electrochemical sensor of Sudan I based on template-directed self-assembly of graphene-ZnSe quantum dots hybrid structure. Sens. Actuators B 215, 181–187 (2015)

    Article  CAS  Google Scholar 

  78. X. Ma, M. Chao, Z. Wang, Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chem. 138, 739–744 (2013)

    Article  CAS  PubMed  Google Scholar 

  79. Y. Mao, Q. Fan, J. Li, L. Yu, L.B. Qu, A novel and green CTAB-functionalized graphene nanosheets electrochemical sensor for Sudan I determination. Sens. Actuators B 203, 759–765 (2014)

    Article  CAS  Google Scholar 

  80. D. Yang, L. Zhu, X. Jiang, Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 640, 17–22 (2010)

    Article  CAS  Google Scholar 

  81. S. Chen, D. Du, J. Huang, A. Zhang, H. Tu, A. Zhang, Rational design and application of molecularly imprinted sol–gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta 84, 451–456 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. H. Yin, Y. Zhou, X. Meng, T. Tang, S. Ai, L. Zhu, Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem. 127, 1348–1353 (2011)

    Article  CAS  PubMed  Google Scholar 

  83. O. Chailapakul, W. Wonsawat, W. Siangproh, K. Grudpan, Y. Zhao, Z. Zhu, Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode. Food Chem. 109, 876–882 (2008)

    Article  CAS  PubMed  Google Scholar 

  84. Y. Wu, Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron (III)-porphyrin modified glassy carbon electrodes. Food Chem. 2010(121), 580–584 (2010)

    Article  CAS  Google Scholar 

  85. T. Gan, K. Li, K. Wu, Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sens. Actuators B 132, 134–139 (2008)

    Article  CAS  Google Scholar 

  86. Z.R. Mo, Y.F. Zhang, F.Q. Zhao, F. Xiao, G.P. Guo, B.Z. Zeng, Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant–ionic liquid–multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chem. 121, 233–237 (2010)

    Article  CAS  Google Scholar 

  87. Y. Yao, Y. Liu, Z. Yang, Highly sensitive electrochemical sensor for the food toxicant Sudan I based on a glassy carbon electrode modified with reduced graphene oxide decorated with Ag-Cu nanoparticles. Microchim. Acta 183, 3275–3283 (2016)

    Article  CAS  Google Scholar 

  88. L. Li, X. Liu, J. Lu, Y. Liu, X. Lu, A green electrochemical sensor based on a poly (ionic liquid)–graphene nanocomposite modified electrode for Sudan I determination. Anal. Methods 7, 6595–6601 (2015)

    Article  CAS  Google Scholar 

  89. D. Thomas, A.E. Vikraman, T. Jos, K.G. Kumar, Kinetic approach in the development of a gold nanoparticle based voltammetric sensor for Sudan I. LWT-Food Sci. Technol. 63, 1294–1300 (2015)

    Article  CAS  Google Scholar 

  90. Y. Cao, Z. Fang, D. Yang, Y. Gao, H. Li, Voltammetric sensor for Sudan I based on glassy carbon electrode modified by SWCNT/β-Cyclodextrin conjugate. NANO 10, 1550026 (2015)

    Article  CAS  Google Scholar 

  91. B. Liu, C. Yin, M. Wang, Electrochemical determination of Sudan I in food products using a carbon nanotube-ionic liquid composite modified electrode. Food Addit. Contam. Part A 31, 1818–1825 (2014)

    Article  CAS  Google Scholar 

  92. L. Yu, Y. Mao, Y. Gao, L. Qu, Sensitive and simple voltammetric detection of Sudan I by using platinum nanoparticle-modified glassy carbon electrode in food samples. Food Anal. Methods 7, 1179–1185 (2014)

    Article  Google Scholar 

  93. T. Gan, J. Sun, M. He, L. Wang, Highly sensitive electrochemical sensor for Sudan I based on graphene decorated with mesoporous TiO2. Ionics 20, 89–95 (2014)

    Article  CAS  Google Scholar 

  94. L. Zhang, X. Zhang, X. Li, Y. Peng, H. Shen, Y. Zhang, Determination of Sudan I using electrochemically reduced graphene oxide. Anal. Lett. 46, 923–935 (2013)

    Article  CAS  Google Scholar 

  95. S.X. Luo, Y.H. Wu, H. Gou, Electrocatalysis and sensitive determination of Sudan I at Fe3O4/graphene modified glassy carbon electrodes. Appl. Mechan. Mater. 401, 775–778 (2013)

    Google Scholar 

  96. M. Chao, X. Ma, Electrochemical determination of Sudan I at a silver nanoparticles/poly (aminosulfonic acid) modified glassy carbon electrode. Int. J. Electrochem. Sci. 7, (2012)

    Google Scholar 

  97. L. Ming, X. Xi, T. Chen, J. Liu, Electrochemical determination of trace Sudan I contamination in chili powder at carbon nanotube modified electrodes. Sensors 8, 1890–1900 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. F. Arduini, L. Micheli, D. Moscone, G. Palleschi, S. Piermarini, F. Ricci, G. Volpe, Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. TrAC Trend. Anal. Chem. 79, 114–126 (2016)

    Article  CAS  Google Scholar 

  99. M. Li, D.W. Li, G. Xiu, Y.T. Long, Applications of screen-printed electrodes in current environmental analysis. Curr. Opin. Electrochem. 3, 137–143 (2017)

    Article  CAS  Google Scholar 

  100. J. Barton, M.B.G. García, D.H. Santos, P. Fanjul-Bolado, A. Ribotti, M. McCaul, D. Diamond, P. Magni, Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim. Acta 183, 503–517 (2016)

    Article  CAS  Google Scholar 

  101. H. Beitollahi, S. Tajik, S. Jahani, F. Garkani-Najed, NiFe2O4 nanoparticles-modified screen printed electrode for electrochemical detection for sudan I. Anal. Bioanal. Electrochem. 10, 1317–1327 (2018)

    CAS  Google Scholar 

  102. H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples. Food Chem. 286, 191–196 (2019)

    Article  CAS  PubMed  Google Scholar 

  103. S. Tajik, M.R. Aflatoonian, R. Shabanzade, H. Beitollahi, R. Alizadeh, Amplified electrochemical sensor employing ZnO-CuO nanoplates for sensitive analysis of Sudan I. Int. J. Environ. Anal. Chem. 100, 109–120 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayeh Tajik, Yasin Orooji, Hadi Beitollahi or Mohammadreza Shokouhimehr.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, S., Orooji, Y., Ghazanfari, Z. et al. Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. Food Measure 15, 3837–3852 (2021). https://doi.org/10.1007/s11694-021-00955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00955-1

Keywords

Navigation