Skip to main content
Log in

Native berries of Chile: a comprehensive review on nutritional aspects, functional properties, and potential health benefits

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In recent years, the use of native berries has increased, since the presence of elevated levels of bioactive compounds and, consequently compounds that provide beneficial effects for human health has been shown. This study reviews the nutritional aspects, phytochemical composition, and biological activities of native berries of Chile, specifically Ugni molinae, Berberis microphylla, Fragaria chiloensis, Aristotelia chilensis, and Ribes spp. These species are rich in bioactive compound with several health promoting effects. The most significant health benefits have been attributed to phenolic compounds, specifically anthocyanins, which have potential protective roles against cancer and cardiovascular diseases. This paper discusses the biological activity of those compounds, in particular their antioxidant properties, the bioaccessibility and bioavailability of phenolic compounds and their health-promoting properties to emphasize the importance of native berries from Chile in healthy diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Miranda, A. Altamirano, L. Cayuela, A. Lara, M. González, Native forest loss in the Chilean biodiversity hotspet: revealing the evidence. Reg. Environ. Change. 17, 285–297 (2017). https://doi.org/10.1007/s10113-016-1010-7

    Article  Google Scholar 

  2. P. Velásquez, G. Montenegro, Chilean Endemic/Native Plant Resources as Functional and Superfoods, in Superfood and Functional Food - An Overview of Their Processing and Utilization. ed. by V. Waisundara, N. Shiomi (IntechOpen, London, 2017)

    Google Scholar 

  3. C. Fredes, G. Montenegro, J.P. Zoffoli, F. Santander, P. Robert, Comparison of the total phenolic content, total anthocyanin content and antioxidant activity of polyphenol-rich fruit grown in Chile. Cien. Inv. Agr. 41(1), 49–60 (2014). https://doi.org/10.4067/S0718-16202014000100005

    Article  Google Scholar 

  4. A. Ruiz, L. Bustamante, C. Vergara, D. von Baer, I. Hermosín-Gutiérrez, L. Obando, C. Mardones, Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chem. 167, 84–90 (2015). https://doi.org/10.1016/j.foodchem.2014.06.052

    Article  CAS  PubMed  Google Scholar 

  5. J. Guerrero, L. Ciampi, A. Castilla, F. Medel, H. Schalchli, E. Hormazabal, E. Bensch, M. Alberti, Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chilean J. Agric. Res. 70(4), 537–544 (2010). https://doi.org/10.4067/S0718-58392010000400002

    Article  Google Scholar 

  6. L. Fuentes, C.R. Figueroa, M. Valdenegro, R. Vinet, Patagonian berries: Healthy potential and the path to becoming functional food. Foods. 8, 2–24 (2019). https://doi.org/10.3390/foods8080289

    Article  CAS  Google Scholar 

  7. M.E. Romero, F. Noriega, M. Farías, P. Jara, B. Vera, M.D. López, New source of natural antioxidants: Characterisation of bioactive compounds in five native Chilean fruits. Perfiles. 22(2), 34–41 (2019)

    Google Scholar 

  8. M.E. Schrenckinger, J. Lotton, M.A. Lila, E. Gonzalez de Mejia, Berries from South America: A comprehensive review on chemistry, health potential, and commercialization. J. Med. Food. 13(2), 233–246 (2010). https://doi.org/10.1089/jmf.2009.0233

    Article  CAS  Google Scholar 

  9. M.D. López, N. Baenas, J. Retamal-Salgado, N. Zapata, D.A. Moreno, Underutilized native Biobio berries: Opportunities for foods and trade. Nat. Prod. Commun. 13(12), 1681–1684 (2018)

    Google Scholar 

  10. M. Rubilar, C. Jara, Y. Poo, F. Acevedo, C. Gutierrez, J. Sineiro, C. Shene, Extracts of maqui (Aristotelia chilensis) and murta (Ugni molinae Turcz): Sources of antioxidant compounds and α-glucosidase/α-amylase inhibitors. J. Agric. Food Chem. 59, 1630–1637 (2011). https://doi.org/10.1021/jf103461k

    Article  CAS  PubMed  Google Scholar 

  11. S. Tian, Y. Sun, Z. Chen, Y. Yang, Y. Wang, Functional properties of polyphenols in grains and effects of physicochemical processing on polyphenols. J. Food Qual. (2019). https://doi.org/10.1155/2019/2793973

    Article  Google Scholar 

  12. A.M. Miranda, K. Steluti, R.M. Fisberg, D.M. Marchioni, Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: a population-based study. Br. J. Nutr. 115, 1061–1070 (2016). https://doi.org/10.1017/S0007114515005061

    Article  CAS  PubMed  Google Scholar 

  13. S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, J. Sochor, Bioactive compunds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 16, 24673–24706 (2015). https://doi.org/10.3390/ijms161024673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S.H. Nile, S.W. Park, Edible berries: Bioactive components and their effect on human health. Nutrition 30, 134–144 (2014). https://doi.org/10.1016/j.nut.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  15. A. Salvatierra, P. Pimentel, M.A. Moya-León, R. Herrera, Biosynthesis of flavonoids in achenes of Fragaria chiloensis ssp. Chiloensis. Bol. Latinoam. Caribe Plant. Med. Aromat. 1(4), 406–414 (2014)

    Google Scholar 

  16. F. Jiménez-Aspee, S. Thomas-Váldes, A. Schulz, A. Ladio, C. Theoduloz, G. Schmeda-Hirschmann, Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci. Nutr. 4(4), 595–610 (2016). https://doi.org/10.1002/fsn3.323

    Article  CAS  PubMed  Google Scholar 

  17. J.A. Hoffmann, Flora silvestre de Chile zona araucana, in Zona Araucana Arboles Arbustos Y Enredaderas 2. ed. by F.C. Gay (Santiago, Chile, 1991)

    Google Scholar 

  18. M.A. Avello, E.R. Pastene, E.D. Bustos, M.L. Bittner, J.A. Becerra, Variation in phenolic compounds of Ugni molinae populations and their potential use as antioxidant supplement. Rev. Bras. de Farmacogn. 23(1), 4–50 (2013). https://doi.org/10.1590/S0102-695X2012005000122

    Article  CAS  Google Scholar 

  19. K. Ah-Hen, C.E. Zambra, J.E. Aguero, A. Vega-Gálvez, R. Lemus-Mondaca, Moisture Diffusivity coefficient and convective drying modelling of murta (Ugni molinae Turcz): Influence of temperature and vacuum on drying kinetics. Food Bioprocess. Technol. 6(4), 919–930 (2013). https://doi.org/10.1007/s11947-011-0758-5

    Article  Google Scholar 

  20. C. Hauser, A. Peñaloza, F. Rodríguez, A. Guarda, M.J. Galotto, Promising antimicrobial and antioxidant extracts of murta leaves (Ugni molinae Turcz): Shelf-life extension and food safety. Food Pack. Shelf Life. 78, 11–85 (2014). https://doi.org/10.1016/j.fpsl.2014.01.003

    Article  Google Scholar 

  21. C. Fredes, Antioxidantes en berries nativos chilenos. Bol. Latinoam. Caribe Plantas Med. Aromát. 8(6), 469–478 (2009)

    CAS  Google Scholar 

  22. C. López de Dicastillo, F. Bustos, A. Guarda, M.J. Galotto, Cross-inked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 20, 335–344 (2016). https://doi.org/10.1016/j.foodhyd.2016.03.020

    Article  CAS  Google Scholar 

  23. A. Reyes, V. Bubnovich, R. Bustos, M. Vásquez, M. Vega, E. Scheuermann, Comparative study of different process conditions of freeze drying og “murtilla” berry. Drying Tech. 28(12), 1416–1425 (2010). https://doi.org/10.1080/07373937.2010.482687

    Article  CAS  Google Scholar 

  24. E. Scheuermann, I. Seguel, A. Montenegro, R. Bustos, E. Hormazábal, A. Quiroz, Evolution of aroma compounds of murtilla fruits (Ugni molinae Turcz) during storage. J. Sci. Food Agric. 88, 485–492 (2008). https://doi.org/10.1002/jsfa.3111

    Article  CAS  Google Scholar 

  25. M. Rufino, R.E. Alves, E.S. de Brito, J. Pérez-Jiménez, F. Saura-Calixto, J. Mancini-Filho, Bioactive compounds ad antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 121, 996–1002 (2010). https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  CAS  Google Scholar 

  26. K. Rodríguez, K. Ah-Hen, A. Vega-Gálvez, J. López, I. Quispe-Fuentes, R. Lemus-Mondaca, L. Gálvez-Ranilla, Changes in bioactive compounds and antioxidant activity during convective drying of murta (Ugni molinae T.) berries. Int. J. Food Sci. Tech. 49, 990–1000 (2014). https://doi.org/10.1111/ijfs.12392

    Article  CAS  Google Scholar 

  27. F.S. Merino, Elaboración de Láminas de Fruta (“Fruit Leathers”) a Partir de Pulpa de Murta (Ugni Molinae Turcz.) Congelada (Tesis Licenciado en Ingeniería en Alimentos University Austral de Chile Valdivia, Chile, 2002)

    Google Scholar 

  28. H. Schmidt-Hebbel, I. Pennacchiotti, L. Masson, A. Mella, Tabla de Composición Química de Los Alimentos Chilenos, 8a edn. (Editorial Antártica S.A, Santiago, Chile, 1992)

    Google Scholar 

  29. A. Ruiz, I. Hermosín-Gutiérrez, C. Mardones, C. Vergara, E. Herlitz, M. Vega, C. Dorau, P. Winterhalte, D. von Baer, Polyphenols and antioxidant activity od calafate (Berberis microphylla) fruits and other native berries from southern Chile. J. Agr. Food Chem. 58, 6081–6089 (2010). https://doi.org/10.1021/jf100173x

    Article  CAS  Google Scholar 

  30. A. Ojeda, J. Hirzel, M.T. Pino, C. Leod, K. Águila, Composición y evolución nutricional del calafate en la región del Magallanes. Ministerio de Agricultura, Instituto de Investigaciones Agropecuarias-INIA Kampenaike- Informativo N° 8, (2017).

  31. FIA (Fundación para la Innovación Agraria). Productos Agroindustriales Ricos en Antioxidantes, a Base de Berries Nativos Proyecto de Innovación Serie Experiencias de Innovación para el Emprendimiento Agrario (2009).

  32. T. Nishizama, S. Nagasawa, Y. Mori, Y. Kondo, Y. Sasaki, J.B. Retamales, A. Lavin, Characteristics of soluble sugar accumulation in commercially grown Fragaria chiliensis. HortSci. 40(6), 1647–1648 (2005). https://doi.org/10.21273/HORTSCI.40.6.1647

    Article  Google Scholar 

  33. F. Garrido Makinistian, P. Sette, L. Gallo, V. Bucalá, D. Salvatori, Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. J. Food Sci. Technol. 56(7), 3553–3560 (2019). https://doi.org/10.1007/s13197-019-03840-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K. Rodríguez, K. Ah-Hen, A. Vega-Gálvez, V. Vásquez, I. Quispe-Fuentes, P. Rojas, R. Lemus-Mondaca, Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis Mol Stuntz, berries during drying. LWT-Food Sci. Tech. 65, 537–542 (2016). https://doi.org/10.1016/j.lwt.2015.08.050

    Article  CAS  Google Scholar 

  35. J. Peña, Aristotelia chilensis: A Possible nutraceutical or functional food. Med Chem. 5(8), 378–382 (2015). https://doi.org/10.4172/2161-0444.1000289

    Article  CAS  Google Scholar 

  36. J.E. Brauch, M. Buchweitz, R.M. Schweiggert, R. Carle, Detailed analyses of fresh and dried maqui (Aristotelia Chilensis (Mol) Stuntz) berries a juice. Food Chem. 190, 308–316 (2016). https://doi.org/10.1016/j.foodchem.2015.05.097

    Article  CAS  PubMed  Google Scholar 

  37. S.M. Soomar, S. Ranani, Laboratory based experimental study on microbial spoilage of commercially available fruits. J. Microb. Biochem. Technol. 11(4), 423 (2019). https://doi.org/10.35248/1948-5948.19.11.423

    Article  Google Scholar 

  38. F. Najwa, A. Azrina, Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J. 24(2), 726–733 (2017)

    Google Scholar 

  39. E. Uribe, A. Delgadillo, C. Giovagnoli-Vicuña, I. Quispe-Fuentes, L. Zura-Bravo, Extraction Techniques for Bioactive Compounds and Antioxidant Capacity Determination of Chilean Papaya (Vasconcellea pubescens) Fruit. J. Chem. (2015). https://doi.org/10.1155/2015/347532

    Article  Google Scholar 

  40. Y. Nuñez-Mancilla, M. Pérez-Won, E. Uribe, A. Vega-Gálvez, K. Di Scala, Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT-Food Sci. Tech. 52(2), 151–156 (2013). https://doi.org/10.1016/j.lwt.2012.02.027

    Article  CAS  Google Scholar 

  41. P.A.P. de Souza, T.L.T. da Pereira, L.C. de Silva, R. Olivaira Lima, F.Q. Pio, Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 156, 362–368 (2014). https://doi.org/10.1016/j.foodchem.2014.01.125

    Article  CAS  PubMed  Google Scholar 

  42. H. Kallio, B. Yang, P. Peippo, Effect of different origins and harvesting time on vitamin C, tocopherols, and tootrienols in sea buckthorn (Hippophaë rhamnoides) berries. J. Agric. Food Chem. 50, 6136–6142 (2002). https://doi.org/10.1021/jf020421v

    Article  CAS  PubMed  Google Scholar 

  43. D.F. Garcia-Diaz, P. Jimenez, M. Reyes-Farias, J. Soto-Covasich, A.G.V.A. Costa, Review of the potential of Chilean native berries in the treatment of obesity and its related features. Plant Foods Hum. Nutr. 74(3), 277–286 (2019). https://doi.org/10.1007/s11130-019-00746-6

    Article  PubMed  Google Scholar 

  44. E. Mariangel, M. Reyes-Diaz, W. Lobos, E. Bensch, H. Schalchli, P. Ibarra, The antioxidant properties of calafate (Berberis microphylla) fruits from four different locations in southern Chile. Cien. Inv. Agr. 40(1), 161–170 (2013). https://doi.org/10.7764/rcia.v40i1.460

    Article  Google Scholar 

  45. A. Brito, C. Areche, B. Sepúlveda, E.J. Kennelly, M.J. Simirgiotis, Anthocyanin characterization, total phenolic quantification and antioxidant features of some Chilean edible berry extracts. Molecules 19, 10936–10955 (2014). https://doi.org/10.3390/molecules190810936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Barth, T.R. Hankinson, H. Zhuang, F. Breidt, Microbiological Spoilage of Fruits and Vegetables, in Compendium of the Microbiological Spoilage of Foods and Beverages, Food Microbiology and Food Safety. ed. by W.H. Sperber, M.P. Doyle (Springer, New York, 2009), pp. 135–183

    Chapter  Google Scholar 

  47. M. Akbulut, S. Calisir, T. Marakoglu, H. Coklar, Some physicomechanical and nutritional properties of barberry (Berberis vulgaris L.) fruits. J. Food Process. Eng. 32, 497–511 (2009). https://doi.org/10.1111/j.1745-4530.2007.00229x

    Article  Google Scholar 

  48. G. Schmeda-Hirschmann, F. Jiménez-Aspee, C. Theoduloz, A. Ladio, Patagonian berries as native food and medicine. J. Ethnopharmacol. 241, 111979 (2019). https://doi.org/10.1016/j.jep.2019.111979

    Article  CAS  PubMed  Google Scholar 

  49. L. Morales-Quintana, P. Ramos, Chilean strawberry (Fragaria chiloensis): An integrative and comprehensive review. Food Res. Inter. 119, 769–776 (2019). https://doi.org/10.1016/j.foodres.2018.10.059

    Article  CAS  Google Scholar 

  50. A. Salvatierra, P. Pimentel, M.A. Moya-Leon, P.D.S. Caligari, R. Herrera, Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Phytochem. 71, 1839–1847 (2010). https://doi.org/10.1016/j.phytochem.2010.08.005

    Article  CAS  Google Scholar 

  51. C.E. Finn, B.C. Strik, P.P Moore, Strawberry cultivars for western Oregon and Washington. Oregon State Univ. Ext. Serv. Publ. EC 1618-E (2014).

  52. J. Hancock, A. Lavín, J. Retamales, Our southern strawberry heritage: Fragaria chiloensis of Chile. HortScience 34, 814–816 (1999). https://doi.org/10.21273/HORTSCI.34.5.814

    Article  Google Scholar 

  53. C.E. Finn, The Chilean strawberry (Fragaria chilensis): Over 1000 years of domestication. HortScience 48(4), 418–421 (2013)

    Article  Google Scholar 

  54. M. González, C. Gaete-Eastman, M. Valdenegro, C.R. Figueroa, L. Fuentes, R. Herrera, M.A. Moya-León, Aroma development during ripening of fragaria chiloensis fruit and participation of an alcohol acyltransferase (FcAAT1) gene. J. Agric. Food Chem. 57(19), 9123–9132 (2009). https://doi.org/10.1021/jf901693j

    Article  CAS  PubMed  Google Scholar 

  55. F. Mora, P.E. Zúñiga, C.R. Figueroa, Genetic variation and trait correlations for fruit weight, firmness and color parameters in wild accessions of Fragaria chiloensis. Agronomy. 9, 1–9 (2019). https://doi.org/10.3390/agronomy9090506

    Article  CAS  Google Scholar 

  56. E. Misle, H. Garrido, H. Contardo, W. González, Maqui [Aristotelia chilensis (MOL.) Stuntz]-the amazing Chilean tree: A review. J. Agri. Sci. Tech. 1, 473–482 (2011)

    Google Scholar 

  57. G.E. Zuñiga, A. Tapia, A. Arenas, R.A. Contreras, G. Zúñiga-Libano, Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: a review. Phytochem. Rev. 16, 1081–1094 (2017). https://doi.org/10.1007/s11101-017-9533-1

    Article  CAS  Google Scholar 

  58. J.R. Alonso, Maqui (Aristotelia chilensis): a Chilean nutraceutical of medicinal relevance. Rev. Farmacol. Chile. 5(2), 95–100 (2012)

    Google Scholar 

  59. C.M. Weaver, Potassium and health. Adv. Nutr. 4, 368S-377S (2013). https://doi.org/10.3945/an.112.003533

    Article  CAS  PubMed  Google Scholar 

  60. P. Bañados, C. Hojas, C. Patilllo, J. Gonzalez, Geographical distribution of native Ribes species present in the herbarium of Chile. Acta Hort. 585, 103–106 (2002). https://doi.org/10.17660/ActaHortic.2002.585.13

    Article  Google Scholar 

  61. A. Burgos-Edwards, F. Jiménez-Aspee, S. Thomas-Valdés, G. Schmeda-Hirschmann, C. Theoduloz, Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and Ribes punctatum after in vitro gastrointestinal digestion. Food Chem. 237, 1073–1082 (2017). https://doi.org/10.1016/j.foodchem.2017.06.060

    Article  CAS  PubMed  Google Scholar 

  62. A. Szajdek, E.J. Borowska, Bioactive compounds and health-promoting properties of berry fruits: A Review. Plant Foods Hum. Nutr. 63, 147–156 (2008). https://doi.org/10.1007/s11130-008-0097-5

    Article  CAS  PubMed  Google Scholar 

  63. S.N. Jimenez-Garcia, R.G. Guevara-Gonzalez, R. Miranda-Lopez, A.A. Feregrino-Perez, I. Torres-Pacheco, M.A. Vazquez-Cruz, Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, annd genomics. Food Res. Intern. 54(1), 1195–1207 (2013). https://doi.org/10.1016/j.foodres.2012.11.004

    Article  CAS  Google Scholar 

  64. S. Martins, S.I. Mussatto, G. Martínez-Avila, J. Montañez-Saenz, C.N. Aguilar, J.A. Teixeira, Bioactive phenolic compounds: Production and extraction by solid-state fementation. A review. Biotechnol Adv. 29, 36–373 (2011). https://doi.org/10.1016/j.biotechadv.2011.01.008

    Article  CAS  Google Scholar 

  65. S. Alfaro, A. Mutis, A. Quiroz, I. Seguel, E. Scheuermann, Effects of drying techniques on murtilla fruit polyphenols and antioxidant activity. J. Food Res. 3(5), 73–82 (2014). https://doi.org/10.5539/jfr.v3n5p73

    Article  Google Scholar 

  66. R.C. Pimpão, T. Dew, P.B. Oliveira, G. Williamson, R.B. Ferreira, Analysis of phenolic compounds in Portuguese wild and commercial berries after multienzyme hydrolysis. J. Agric. Food Chem. 61, 4053–4062 (2013). https://doi.org/10.1021/jf305498j

    Article  CAS  PubMed  Google Scholar 

  67. M.M. Bratu, S. Birguila, A. Popescu, B.S. Negreanu-Pirjol, T. Negreanu-Pirjol, Correlation of antioxidant activity of dried berry infusions with the polyphenols and selected microelements contents. Bull. Chem. Soc. Ethiop. 32(1), 1–12 (2018). https://doi.org/10.4314/bcse.v32i1.1

    Article  CAS  Google Scholar 

  68. N. Kahkeshani, F. Farzaei, M. Fotouhi, S.S.H. Alavi, R. Bahramsoltani, R. Naseri, S. Momtaz, Z. Abbasabadi, R. Rahimi, M.H. Farzaei, A. Bishayee, Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J. Basic Med. Sci. 22, 225–237 (2019). https://doi.org/10.22038/ijbms.2019.32806.7897

    Article  PubMed  PubMed Central  Google Scholar 

  69. S. Alfaro, A. Mutis, R. Palma, A. Quiroz, I. Seguel, E. Scheuermann, Influence od genotype and harvest year on polyphenol content and antioxidant activity in murtilla (Ugni molinae Turcz) fruit. J. Soil Sci. Plant Nutr. 13(1), 67–78 (2013). https://doi.org/10.4067/S0718-95162013005000007

    Article  Google Scholar 

  70. M.J. Simirgiotis, C. Theoduloz, P.D.S. Calagari, G. Schmeda-Hirschmann, Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes. Food Chem. 113, 377–385 (2009). https://doi.org/10.1016/j.foodchem.2008.07.043

    Article  CAS  Google Scholar 

  71. G. Schmeda-Hirschmann, M. Simirgiotis, J. Cheel, Chemistry of the Chilean Strawberry (Fragaria chiloensis spp. chiloensis). Genes Genom. Genomics. 5(1), 85–90 (2011)

    Google Scholar 

  72. I. Quispe-Fuentes, A. Vega-Gálvez, M. Aranda, Evaluation of phenolic profiles and antioxidant capacity of maqui (Aristotelia chilensis) berries and their relationships to drying methods. J Sci Food Agric. 98, 4168–4176 (2018). https://doi.org/10.1002/jsfa.8938

    Article  CAS  PubMed  Google Scholar 

  73. B.S. Bushman, B. Phillips, T. Isbell, B. Ou, J.M. Crane, S.J. Knapp, Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential. J. Agric Food Chem. 52, 7982–7987 (2004). https://doi.org/10.1021/jf049149a

    Article  CAS  PubMed  Google Scholar 

  74. F. Jiménez-Aspee, C. Theoduloz, M. Neves Vieira, M.A. Rodríguez-Werner, E. Schmalfuss, P. Winterhalter, G. Schmeda-Hirschmann, Phenolics from the Patagonian currants Ribes spp.: Isolation characterization and cytoprotective effect in human AGS cell. J. Func. Food. 26, 11–26 (2016). https://doi.org/10.1016/j.jff.2016.06.036

    Article  CAS  Google Scholar 

  75. C. Theoduloz, A. Burgos-Edwards, G. Schmeda-Hirschmann, F. Jiménez-Aspee, Effect of polyphenolcs from wild Chilean currant (Ribes spp.) on the activity of intracellular antioxidant enzymes in human gastric AGS cells. Food Bioscence. 24, 80–88 (2018). https://doi.org/10.1016/j.fbio.2018.06.003

    Article  CAS  Google Scholar 

  76. C. Parra-Palma, E. Fuentes, I. Palomo, C.A. Torres, M. Moya-León, P. Ramos, Linking the platelet antiaggregation effect of different strawberries species with antioxidants: Metabolomic and transcript profiling of polyphenols. Blacpma 17(1), 36–52 (2018)

    Google Scholar 

  77. J. Li, C. Yuan, L. Pan, P.A. Benatrehina, H. Chai, W.J. Keller, C.B. Naman, A. Douglas Kinghorn, Bioassay-guided isolation of antioxidant and cytoprotective constituents from a maqui berry (Aristotelia chilensis) dietary supplement ingredient as markers for qualitative and quantitative analysis. J. Agric. Food Chem. 65, 8634–8642 (2017). https://doi.org/10.1021/acs.jafc.7b03261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. M.P. Junqueira-Gonçalves, L. Yáñez, C. Morales, M. Navarro, R.A. Contreras, G.E. Zuñiga, Isolation and Characterization of Phenolic Compounds and Anthocyanins from Murta (Ugni molinae Turcz) Fruits. Assessment of Antioxidant and Antibacterial Activity. Molecules 20, 5698–5713 (2015). https://doi.org/10.3390/molecules20045698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. J. Cheel, C. Theoduloz, J. Rodríguez, G. Saud, P.D.S. Caligari, G. Schmeda-Hirschmann, E-Cinnamic acid derivates and phenolic from Chilean strawberry fruits, Fragaria chiloensis ssp. Chiloensis. J. Agric. Food Chem. 53, 8512–8518 (2005). https://doi.org/10.1021/jf051294g

    Article  CAS  PubMed  Google Scholar 

  80. A. Salvatierra, P. Pimentel, M.A. Moya-León, R. Herrera, Increased accumulation of anthocyanins in Fragaria chilensis fruits by transient suppression of FcMYB1 gene. Phytochem. 90, 25–36 (2013). https://doi.org/10.1016/j.phytochem.2013.02.016

    Article  CAS  Google Scholar 

  81. H. Masoodi, D. Villaño, P.A. Zafrilla, A comprehensive review on fruit Aristotelia chilensis (Maqui) for modern health: towards a better understanding. Food & Func. 10(6), 3057–3067 (2019). https://doi.org/10.1039/c8fo02429d

    Article  CAS  Google Scholar 

  82. M.T. Escribano-Bailón, C. Alcalde-Eon, O. Muñoz, J.C. Rivas-Gonzalo, C. Santos-Buelga, Anthocyanins in berries of maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem Anal. 17, 8–14 (2006). https://doi.org/10.1002/pca.872

    Article  CAS  PubMed  Google Scholar 

  83. C. Fredes, G. Montenegro, J.P. Zoffoli, M. Gómez, P. Robert, Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis [Molina] Stuntz) during fruit development and maduration in central Chile. Chilean J. Agric. Res. 72(4), 582–589 (2012). https://doi.org/10.4067/S0718-58392012000400019

    Article  Google Scholar 

  84. A. Ruiz, I. Hermosín-Gutiérrez, C. Vergara, D. von Baer, M. Zapata, A. Hitschfeld, L. Obando, C. Mardones, Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Inter. 51, 706–713 (2013). https://doi.org/10.1016/j.foodres.2013.01.043

    Article  CAS  Google Scholar 

  85. X. Yan, B.T. Murphy, G.B. Hammond, J.A. Vinson, C.C. Nieto, Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 50, 5844–5849 (2002). https://doi.org/10.1021/jf0202234

    Article  CAS  PubMed  Google Scholar 

  86. C.L. Céspedes, M. el-Hafidi, N. Pavon, J. Alarcon, , Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae). Maqui. Food Chem. 107, 820–829 (2008). https://doi.org/10.1016/j.foodchem.2007.08.092

    Article  CAS  Google Scholar 

  87. J. López, A. Vega-Gálvez, A. Rodríguez, E. Uribe, C. Bilbao-Sainz, Murta (Ugni molinae Turcz): A review on chemical composition, functional components and biological activities of leaves and fruit. Chilean J. Agric. Anim. Sci. 34(1), 43–56 (2018). https://doi.org/10.4067/S0719-38902018005000205

    Article  Google Scholar 

  88. H. Speisky, C. López-Alarcón, M. Gómez, J. Fuentes, C. Sandoval-Acuña, First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the south Andes region of South America. J. Agric. Food Chem. 60, 8851–8859 (2012). https://doi.org/10.1021/jf205167k

    Article  CAS  PubMed  Google Scholar 

  89. T.R. Augusto, E.F. Scheuermann Salinas, S.M. Alencar, M.A. D’Arce, A. Costa de Camargo, T.M. Vieira, Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food. Sci. Technol. Campinas. 34(4), 667–673 (2014). https://doi.org/10.1590/1678-457X.6393

    Article  Google Scholar 

  90. K.W. Lee, Y.J. Kim, H.J. Lee, C.Y. Lee, Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 51(25), 7292–7295 (2003). https://doi.org/10.1021/jf0344385

    Article  CAS  PubMed  Google Scholar 

  91. S. Gorinstein, P. Arancibia-Avila, F. Toledo, J. Namiesnik, H. Leontowicz, M. Leontowicz, K. Ham, S. Kang, K. Vearasilp, M. Suhaj, Application of analitycal methods fot the determination of bioactive compounds in some berries. Food Anal Methods. 6, 432–444 (2013). https://doi.org/10.1007/s12161-012-9453-z

    Article  Google Scholar 

  92. P. Arancibia-Avila, F. Toledo, E. Werner, M. Suhaj, H. Leontowicz, M. Leontowicz, A.L. Martinez-Ayala, P. Paśko, S. Gorinstein, Partial characterization of a new kind of Chilean Murtilla-like berries. Food Research Inter. 44, 2054–2062 (2011). https://doi.org/10.1016/j.foodres.2011.01.016

    Article  CAS  Google Scholar 

  93. F. Ávila, C. Theoduloz, C. López-Alarcón, E. Dorta, G. Schmeda-Hirschmann, Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells. Oxid. Med. Cell. Longev. (2017). https://doi.org/10.1155/2017/9808520

    Article  PubMed  PubMed Central  Google Scholar 

  94. L.E. Rojo, D. Ribnicky, S. Logendra, A. Poulev, P. Rojas-Silva, P. Kuhn, R. Dorn, M.H. Grace, M.A. Lila, I. Raskin, In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui berry (Aristotelia chilensis). Food Chem. 131, 387–396 (2012). https://doi.org/10.1016/j.foodchem.2011.08.066

    Article  CAS  PubMed  Google Scholar 

  95. E. Genskowsky, L.A. Puente, J.A. Pérez-Alvarez, J. Fernández-López, L.A. Muñoz, M. Viuda-Martos, Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 96, 4235–4242 (2016). https://doi.org/10.1002/jsfa.7628

    Article  CAS  PubMed  Google Scholar 

  96. F. Shahidi, H. Bioaccessibility and Bioavailability of phenolic compounds. J. Food Bioact. 4, 11–68 (2018)

    Article  Google Scholar 

  97. J.M. Carbonell-Capella, M. Buniowska, F.J. Barba, M.J. Esteve, A. Frígola, Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 13(2), 155–171 (2014)

    Article  CAS  Google Scholar 

  98. D. Tagliazucchi, E. Verzelloni, D. Bertolini, A. Conte, In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 120, 599–606 (2010)

    Article  CAS  Google Scholar 

  99. K. Ah-Hen, K. Mathias-Retting, L. Gómez-Pérez, G. Riquelme-Asenjo, R. Lemus-Mondaca, O. Muñoz-Fariña, Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T) berries juices. Food Measure. 12, 602–615 (2018). https://doi.org/10.1007/s11694-017-9673-4

    Article  Google Scholar 

  100. M. Bermúdez-Soto, F. Tomás-Barberán, M. García-Conesa, Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 102, 865–874 (2007)

    Article  Google Scholar 

  101. Badui, S. (2006). Química de los alimentos. 4a ed. Pearson Educación. 376 p.

  102. I. Yang, G. Jayaprakasha, B.S. Patil, In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols. Food Funct. 9(2), 1235–1244 (2018). https://doi.org/10.1039/c7fo01749a

    Article  CAS  PubMed  Google Scholar 

  103. A. Chandrasekara, F. Shahidi, Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Food 4(1), 226–237 (2012)

    Article  CAS  Google Scholar 

  104. S. Thomas-Valdés, C. Theoduloz, F. Jiménez-Aspee, G. Schmeda-Hirschmann, Effect of simulated gastrointestinal digestion on polyphenols and bioactivity of the native Chilean red strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica). Food Res. Int. 123, 106–114 (2019). https://doi.org/10.1016/j.foodres.2019.04.039

    Article  CAS  PubMed  Google Scholar 

  105. M. Viuda-Martos, R. Lucas-Gonzalez, C. Ballester-Costa, J. Pérez-Álvarez, L. Muñoz, J, , Fernández-López. Evaluation of protective effect of different dietary fibers on polyphenolic profile stability of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Food function (2018). https://doi.org/10.1039/c7fo01671a

    Article  PubMed  Google Scholar 

  106. R. Lucas-Gonzalez, S. Navarro-Coves, J. Pérez-Álvarez, J. Fernández-López, L. Muñoz, M. Viuda-Martos, Assessment of polyphenolic profile stability and changes in theantioxidant potential of maqui berry (Aristotelia chilensis (Molina)Stuntz) during in vitro gastrointestinal digestion. Ind. Crops Prod. 94, 774–782 (2016). https://doi.org/10.1016/j.indcrop.2016.09.057

    Article  CAS  Google Scholar 

  107. S. Thomas-Valdés, C. Theoduloz, F. Jiménez-Aspee, A. Burgos-Edwards, G. Schemeda-Hirschmann, Changes in polyphenol composition and bioactivity of the native Chilean white strawberry (Fragaria chiloensis spp. chiloensis f. chiloensis) after in vitro gastrointestinal digestion. Food Res. Int. 105, 10–18 (2018). https://doi.org/10.1016/j.foodres.2017.10.074

    Article  CAS  PubMed  Google Scholar 

  108. A. Burgos-Edwards, F. Jiménez-Aspee, C. Theoduloz, G. Schemeda-Hirschmann, Colonic fermentation of polyphenols from Chilean currants (Ribes soo.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes. Food Chem. 258, 144–155 (2017). https://doi.org/10.1016/j.foodchem.2018.03.053

    Article  CAS  Google Scholar 

  109. M. Rubilar, M. Pinelo, M. Ihl, E. Sceuermann, J. Sineiro, J. Nuñez, Murta leaves (Ugni molinae Turcz) as a source of antioxidant polyphenols. J. Agric. Food Chem. 54, 59–64 (2006). https://doi.org/10.1021/jf051571j

    Article  CAS  PubMed  Google Scholar 

  110. A. Basu, M. Rhone, T.J. Lyons, Berries: emerging impact on cardiovascular health. Nutr Rev. 68(3), 168–177 (2010). https://doi.org/10.1111/j.1753-4887.2010.00273.x

    Article  PubMed  PubMed Central  Google Scholar 

  111. J. Beattie, A. Crozier, G.G. Duthie, Potential health benefits of berries. Current Nutr Food Sci. 1, 71–86 (2005). https://doi.org/10.2174/1573401052953294

    Article  CAS  Google Scholar 

  112. R.L. Prior, X. Wu, Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 40(10), 1014–1028 (2006). https://doi.org/10.1080/10715760600758522

    Article  CAS  PubMed  Google Scholar 

  113. J.-M. Kong, L.-S. Chia, N.-K. Goh, T.-F. Chia, R. Brouillard, Analysis and biological activities of anthocyanins. Phytochem. 64, 923–933 (2003). https://doi.org/10.1016/S0031-9422(03)00438-2

    Article  CAS  Google Scholar 

  114. S. Flis, Z. Jastrzebski, J. Namiesnik, P. Arancibia-Avila, F. Toledo, H. Leontowicz, M. Leontowicz, M. Suhaj, S. Trakhtenberg, S. Gosinstein, Evaluation of inhibition of cancer cell proliferation in vitro with different berrie and correlation with their antioxidant level by advanced analytical methods. J. Pharm. Biomed. Anal. 62, 68–78 (2012). https://doi.org/10.1016/j.jpba.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  115. C. Calderón-Reyes, R. Silva, P. Leal, A. Ribera-Fonseca, C. Cáceres, I. Riquelme, T. Zambrano, D. Peña, M. Alberdi, M. Reyez-Díaz, Anthocyanin-Rich Extracts of Calafate (Berberis microphylla G. Forst.) Fruits Decrease In Vitro Viability and Migration of Human Gastric and Gallbladder Cancer Cell Lines. Journal of Soil Science and Plant Nutrition (2020). https://doi.org/10.1007/s42729-020-00260-8

    Article  Google Scholar 

  116. A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, M.J. Blaha, S. Dai et al., Heart disease and stroke statistics— 2014 update: a report from the American Heart Association. Circulation 129(3), e28–e292 (2014). https://doi.org/10.1161/01.cir.0000441139.02102.80

    Article  PubMed  Google Scholar 

  117. I. Jofré, C. Pezoa, M. Cuevas, R. Scheuermann, I. Almeida Freires, P.L. Rosalen, A.M. de Alencar, F. Romero, Antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla) and its modulatory mechanism in hypotensive response. Oxid Med Cell Longev (2016). https://doi.org/10.1155/2016/6513416

    Article  PubMed  PubMed Central  Google Scholar 

  118. M.R. Bhandari, J.A. Nhilubon, H. Gao, J.R. Kawabata, α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliate Haw.). Food Chem. 106, 247–252 (2008). https://doi.org/10.1016/j.foodchem.2007.05.077

    Article  CAS  Google Scholar 

  119. M. Reyes-Farias, K. Vasquez, A. Ovalle-Marin, F. Fuentes, C. Parra, V. Quitral, P. Jimenez, D.F. Garca-Diaz, Chilean native fruit extracts inhibit inflammation linked to the pathogenic interaction between adipocytes and macrophages. J. Medicinal Food. 18, 601–608 (2015). https://doi.org/10.1089/jmf.2014.0031

    Article  CAS  Google Scholar 

  120. V. Cachofeiro, M. Goicochea, S.G. de Vinuesa, P. Oubina, V. Lahera, J. Luno, Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Inter. 74(111), S4–S9 (2008). https://doi.org/10.1038/ki.2008.516

    Article  CAS  Google Scholar 

  121. M. Reyes-Farias, K. Vasquez, F. Fuentes, A. Ovalle-Marin, C. Parra-Ruiz, O. Zamora, M.T. Pino, V. Quitral, P. Jimenez, L. Garcia, D.F. Garcia-Diaz, Extracts of Chilean native fruits inhibit oxidative stress, inflammation and insulin-resistance linked to the pathogenic interaction between adipocytes and macrophages. J Funt. Food. 27, 69–83 (2016). https://doi.org/10.1016/j.jff.2016.08.052

    Article  CAS  Google Scholar 

  122. N. Jia, T. Li, X. Diao, B. Kong, Protective effects of black currant (Ribes nigrum L) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. J. Func. Foods. 11, 142–151 (2014). https://doi.org/10.1016/j.jff.2014.09.011

    Article  CAS  Google Scholar 

  123. C. López-Alarcón, A. Denicola, Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chem. Acta. 763, 1–10 (2013). https://doi.org/10.1016/j.aca.2012.11.051

    Article  CAS  Google Scholar 

  124. C. López de Castillo, F. Bustos, X. Valenzuela, G. López-Carballo, J.M. Vilariño, M.J. Galotto, Chilean berry Ugni molinae Turcz. Fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Research. Inter. 102, 119–128 (2017). https://doi.org/10.1016/j.foodres.2017.09.073

    Article  CAS  Google Scholar 

  125. C. Calfío, J.P. Huidrobo-Toro, Potent vasodilator and cellular antioxidant activity of endemic Patagonian calafate berries (Berberies microphylla) with nutraceutical potential. Molecules 24, 1–17 (2019). https://doi.org/10.3390/molecules24152700

    Article  CAS  Google Scholar 

  126. S. Molinett, F. Nuñez, M.A. Moya-León, J. Zúñiga-Hernández, Chilean strawberry consumption protects against LPS-induced liver injury by anti-inflammatory and antioxidant capacity in Sprague-dawley rats. Evid.-Based Compl. Alt. Med. (2015). https://doi.org/10.1155/2015/320136

    Article  Google Scholar 

  127. S. Miranda-Rottmann, A.A. Aspillaga, D.D. Pérez, L. Vasquez, A.L.F. Martinez, F. Leighton, Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J. Agric. Food Chem. 50, 7542–7547 (2002). https://doi.org/10.1021/jf025797n

    Article  CAS  PubMed  Google Scholar 

  128. A. Di Lorenzo, A.P. Sobolev, S.F. Nabavi, A. Sureda, A.H. Moghaddam, S. Khanjani, C. Di Giovanni, J. Xiao, S. Shirooie, A.J. Tsetegho, A. Baldi, L. Mannina, S.M. Nabavi, M. Daglia, Antidepressive effects of a chemically characterized maqui berry extract (Aristotelia chilensis (molina) stuntz) in a mouse model of Post-stroke Depression. Food Chem Toxicol 129, 434–443 (2019). https://doi.org/10.1016/j.fct.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  129. Z. Gao, L. Chen, Q. Sun, Q. Mo, W. Sun, Y. Wang, Maqui berry exhibited therapeutic effects against DSS-induced ulcerative colitis in C57BL/6 mice. Food Funct. (2019). https://doi.org/10.1039/C9FO00663J

    Article  PubMed  PubMed Central  Google Scholar 

  130. A. Burgos-Edwards, L. Martín-Pérez, F. Jiménez-Aspee, C. Theoduloz, G. Schmeda-Hirchmann, M. Larrosa, Anti-inflammatory effect of polyphenols after in vitro gastrointestinal digestion on Caco-2 cell. Anti-infammatory activity in vivo digted Chilean currants. J. Funct Food. 59, 329–336 (2019). https://doi.org/10.1016/j.jff.2019.06.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of FONDEF under Idea-ID17AM0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennyfer Florez-Mendez.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, J., Vera, C., Bustos, R. et al. Native berries of Chile: a comprehensive review on nutritional aspects, functional properties, and potential health benefits. Food Measure 15, 1139–1160 (2021). https://doi.org/10.1007/s11694-020-00699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00699-4

Keywords

Navigation