Skip to main content
Log in

Effect of germination and roasting on oil profile of Moringa oleifera and Moringa peregrina seeds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Roasting and germination effect on fatty acids, tocopherols and triacylglycerols of Moringa oleifera and by Moringa peregrina seeds oils were investigated. Significant differences were indicated between both species. Oil content and oleic acid were higher in Moringa peregrina (51.22 and 70.76%) than Moringa oleifera (36.90 and 65.78%), while Moringa oleifera had higher tocopherols content than Moringa peregrina (28.8 and 11.45 mg/100 g), respectively. Triolein was the most abundant triacylglycerol in Moringa oleifera and Moringa peregrina seeds oils accounting for 38.28 and 34.32%, respectively. An increase had occurred in total unsaturated fatty acids and oil content, while total saturated fatty acids decreased in both species after germination. Triolein increased and α, β, γ and δ-tocopherols amounts decreased after germination in Moringa oleifera seed oil, while in Moringa peregrina seed oil no significant differences were reported. Roasting led to an increase in behenic, stearic and arachidic, while palmitic acid decreased in both species. The best treatment in roasting was 150 ºC for 20 min which reported the highest amount of oleic acid (66.92 and 72.54%) and the lowest content of elaidic acid (0.10 and 0.13%) in Moringa oleifera and Moringa peregrina seeds oils, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.M. Ghazali, S.M. Abdulkarim, Moringa (Moringa oleifera) seed oil: composition, nutritional aspects, and health attributes, ed. by V.R. Preedy, R.S. Watson, V.B. Patel. Nuts and seeds in health and disease prevention, (Elsevier Inc., 2011), pp. 787–793

  2. A. Sengupta, M.P. Gupta, Studies on the seed fat composition of Moringaceae family. Fette, Seifen, Anstrichmittel. 72(1), 6–10 (1970)

    CAS  Google Scholar 

  3. G. Vlahov, P.K. Chepkwony, P.K. Ndalut, 13C NMR characterization of triacylglycerols of Moringa oleifera seed oil: an "oleicvaccenic acid" oil. J. Agric. Food Chem. 50, 970–975 (2002)

    CAS  PubMed  Google Scholar 

  4. S.M. Abdulkarim, O.M. Lai, S.K.S. Muhammad, K. Long, H.M. Ghazali, Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem. 93, 253–263 (2005)

    CAS  Google Scholar 

  5. A.S. Mohammed, O.M. Lai, S.K. Muhammad, K. Long, H.M. Ghazali, Moringa oleifera, potentially a new source of oleic acid-type oil for Malaysia. Investing in innovation. 1(3), 137–140 (2003)

    Google Scholar 

  6. S. Afsharypuor, G. Asghari, A. Mohagheghzadeh, S. Dehshahri, Volatile constituents of the seed kernel and leaf of Moringa peregrina (Forssk.) Fiori, Agricolt. Cultivated in Chabahar (Iran). Iran. J. Pharm. Sci. 6, 141–144. (2010)

    CAS  Google Scholar 

  7. M.A. Salama, M.A. Owon, M.F. Osman, I. Awatif, B. Matthäus, Characterization of Egyptian Moringa oleifera Lipids (whole seeds and kernels). J. Food Dairy Sci. 9(12), 371–376 (2018)

    Google Scholar 

  8. M.A. Salama, M.A. Owon, M.F. Osman, I. Awatif, B. Matthäus, Moringa oleifera–An interesting source of valuable compounds. 17th Euro Fed Lipid congress and Expo. 20–23 October, Sevilla, Spain (2019)

  9. B.S. Ogunsina, T.N. Indira, A.S. Bhatnagar, C. Radha, D. Sukumar, A.G. Gopalakrishna, Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J Food Sci Technol. 51(3), 503–510 (2014)

    CAS  PubMed  Google Scholar 

  10. P. Siddhuraju, K. Becker, Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 51(8), 2144–2155 (2003)

    CAS  PubMed  Google Scholar 

  11. J. Ram, Moringa: A highly nutritious vegetable tree: tropical rural and island. A Toll Development, Experimental Station (TRIADES). Tech. Bull. 2 (1994)

  12. A. Cáceres, A. Saravia, S. Rizzo, L. Zabala, E. De Leon, F. Nave, Pharamacologic properties of Moringa oleifera: 2: screening for antispasmodic, anti-inflammatoryand diuretic activity. J. Ethnopharmacol. 36(3), 233–237 (1992)

    PubMed  Google Scholar 

  13. K.K. Singh, K. Kumar, Ethnotherapeutics of some medicinal plants used as antipyretic agent among the tribals of India. J. Econ. Taxon. Bot. 23(1), 135–141 (1999)

    Google Scholar 

  14. Y. Morimitsu, K. Hayashi, Y. Nakagama, H. Fujii, F. Horio, K. Uchida, T. Osawa, Antiplatelet and anticancer isothiocyanates in Japanese horseradish. Mech. Ageing Dev. 116(2–3), 125–134 (2000)

    CAS  PubMed  Google Scholar 

  15. S. Iqbal, M. Bhanger, Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Compos. Anal. 19(6–7), 544–551 (2006)

    CAS  Google Scholar 

  16. B. Sultana, F. Anwar, Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 108(3), 879–884 (2008)

    CAS  PubMed  Google Scholar 

  17. N.Z.A. Rani, K. Husain, E. Kumolosasi, Moringa genus: a review of phytochemistry and pharmacology. Front. Pharmacol. 9, 108 (2018)

    Google Scholar 

  18. I. Robiansyah, A.S. Hajar, M.A. Al-kordy, A. Ramadan, Current status of economically important plant Moringa peregrina (Forrsk.) Fiori in Saudi Arabia: a review. Int. J. Theor. Appl. Sci. 6(1), 79–86 (2014)

    Google Scholar 

  19. I. Yilmaz, H. Yetim, H.W. Ockerman, The effect of different cooking procedures on microbiological and chemical quality characteristics of Tekirdaǧ meatballs. Food/Nahrung. 46(4), 276–278 (2002)

    CAS  PubMed  Google Scholar 

  20. C.E. Chinma, L.J. Lata, T.M. Chukwu, S.O. Azeez, B.S. Ogunsina, E.U. Ohuoba, C.M. Yakubu, Effect of germination time on the proximate composition and functional properties of moringa seed flour. Afr. J. Agric. Technol. Environ. 6(2), 117–133 (2017)

    Google Scholar 

  21. B.O. Mbah, P. Eme, A.E. Paul, Effect of drying techniques on the proximate and other nutrient composition of Moringa oleifera areas in leaves from two eastern Nigeria. Pak. J. Nutr. 11(11), 1044–1048 (2012)

    CAS  Google Scholar 

  22. O.S. Ijarotimi, O.O. Keshinro, Comparison between the amino acid, fatty acid, mineral and nutritional quality of raw, germinated and fermented African locust bean (Parkia biglobosa) flour. Acta Sci. Pol., Technol. Aliment. 11(2), 151–165 (2012)

  23. C.E. Chinma, A.O. Adewuyi, J.O. Abu, Effect of germination on the chemical, functional and pasting properties of flour from brown and yellow varieties of tigernut. Food Res. Int. 42(8), 1004–1009 (2009)

    CAS  Google Scholar 

  24. Deutsche Gesellschaft für Fettwissenschaften E. V, Deutsche einheitsmethoden zur untersuchung von fetten, fettprodukten, tensiden und verwandten stoffen, wissenschaftliche verlagsgesellschaft, Stuttgart (2013)

  25. R.G. Steel, J.H. Torrie, Analysis of variance III: factorial experiments (In Principles and procedures of statistics a biometrical approach. McGraw-Hill, London, 1980), pp. 336–376

    Google Scholar 

  26. O.C. Frank, I.C. Catherine, I.C. Jude, A.O. Edward, Investigation on the effect of germination on the proximate composition of African yam bean (Sphenostylis stenocarpa Hochst ex A Rich) and fluted pumpkin (Telfairia occidentalis). J. Appl. Sci. Environ. Manage. 13(2), 59–61 (2009)

    Google Scholar 

  27. A. Mariod, Y.A. Edris, S.F. Cheng, S.I. Abdelwahab, Effect of germination period and conditions on chemical composition, fatty acids and amino acids of two black cumin seeds. Acta Sci. Pol. Technol. Aliment. 11(4), 401–410 (2012)

    CAS  Google Scholar 

  28. H. Shi, P.K. Nam, Y. Ma, Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agric. Food Chem. 58(8), 4970–4976 (2010)

    CAS  PubMed  Google Scholar 

  29. T.S. Hahm, S.J. Park, Y.M. Lo, Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour. Technol. 100(4), 1643–1647 (2009)

    CAS  PubMed  Google Scholar 

  30. M.M. Özcan, K. Ghafoor, F. Al Juhaimi, I.A.M. Ahmed, E.E. Babiker, Effect of cold-press and soxhlet extraction on fatty acids, tocopherols and sterol contents of the moringa seed oils. S. Afr. J. Bot. 124, 333–337 (2019)

    Google Scholar 

  31. S.M. Abdulkarim, K. Long, O.M. Lai, S.K.S. Muhammed, H.M. Ghazali, Frying quality and stability of high-oleic Moringa oleifera seed oilin comparison with other vegetable oils. Food Chem. 105(4), 1382–1389 (2007)

    CAS  Google Scholar 

  32. J.M. Nzikou, L. Matos, J.E. Moussounga, C.B. Ndangui, A. Kimbonguila, T. Silou, M. Linder, S. Desobry, Characterization of Moringa oleifera seed oil variety Congo-Brazzaville. J. Food Technol. 7(3), 59–65 (2009)

    CAS  Google Scholar 

  33. J. Tsaknis, S. Lalas, V. Gergis, V. Dourtoglou, V. Spiliotis, Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. J. Agric. Food Chem. 47(11), 4495–4499 (1999)

    CAS  PubMed  Google Scholar 

  34. S. Lalas, J. Tsaknis, Characterization of Moringa oleifera seed oil variety Periyakulam-1. J. Food Compos. Anal. 15(1), 65–77 (2002)

    CAS  Google Scholar 

  35. Anon., Codex Standard for Named Vegetable Oils, 2015 CODEX STAN 210 (Amended 2003, 2005).

  36. F. Anwar, M. Ashraf, M.I. Bhanger, Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc. 82(1), 45–51 (2005)

    CAS  Google Scholar 

  37. A.M. Giuffrè, M. Capocasale, C. Zappia, V. Sicari, T.M. Pellicano, M. Poiana, G. Panzera, Tomato seed oil for biodiesel production. Eur. J. Lipid Sci. Technol. 118(4), 640–650

  38. A.M. Giuffrè, S. Tellah, M. Capocasale, C. Zappia, M. Latati, M. Badiani, S.M. Ounane, Seed oil from ten Algerian peanut landraces for edible use and giodiesel production. J. Oleo Sci. 65(1), 9–20 (2016)

    PubMed  Google Scholar 

  39. F.B. Shingawa, F.C. De Santana, E. Araujo, E. Purgatto, J. Mancini-Filho, Chemical composition of cold pressed Brazilian grape seed oil. Food Sci. Technol. 38(1), 164–171 (2018)

    Google Scholar 

  40. L. Louadj, A.M. Giuffrè, Analytical characteristics of olive oil produced with three different processes in Algeria. Riv. Ital. Sostanze Grasse. 87(3), 187–195 (2010)

    Google Scholar 

  41. P.K.J.P.D. Wanasundara, U.N. Wanasundara, F. Shahidi, Changes in Flax (Linum usitatissimum L.) seed lipids during germination. J. Am. Oil Chem. Soc. 76(1), 41–48 (1999)

    CAS  Google Scholar 

  42. Y. Endo, A. Ohta, H. Kido, M. Kuriyama, Y. Sakaguchi, S. Takebayashi, H. Hirai, C. Murakami, S. Wada, Determination of triacylglycerol composition in vegetable oils using high-performance liquid chromatography: a collaborative study. J. Oleo Sci. 60(9), 451–456 (2011)

    CAS  PubMed  Google Scholar 

  43. A.M. Giuffrè, Variation in triacylglycerols of olive oils produced in Calabria (Southern Italy) during olive ripening. Riv. Ital. Sostanze Grasse. 91(4), 221–240 (2014)

    Google Scholar 

  44. F. Al Juhaimi, K. Ghafoor, E.E. Babiker, B. Matthäus, M.M. Özcan, The biochemical composition of the leaves and seeds meals of moringa species as non-conventional sources of nutrients. J. Food Biochem. 41(1), e12322 (2017)

    Google Scholar 

  45. R.A. Carciochi, L.G. D’Alessandro, P. Vandendriessche, S. Chollet, Effect of germination and fermentation process on the antioxidant compounds of Quinoa seeds. Plant Foods Hum Nutr. 71(4), 361–367 (2016)

    CAS  PubMed  Google Scholar 

  46. X. Li, J. Li, S. Dong, Y. Li, L. Wei, C. Zhao, J. Li, X. Liu, Y. Wang, Effects of germination on tocopherol, secoisolarlciresinol diglucoside, cyanogenic glycosides and antioxidant activities in flaxseed (Linum usitatissimum L.). Int. J. Food Sci. Technol. 54(7), 2346–2354 (2019)

    CAS  Google Scholar 

  47. Z. Tarasevičienė, A. Viršilė, H. Danilčenko, P. Duchovskis, A. Paulauskienė, M. Gajewski, Effects of germination time on the antioxidant properties of edible seeds. CyTA J. Food. 17(1), 447–454 (2019)

    Google Scholar 

  48. V. Suryanti, S.D. Marliyana, H.E. Putri, Effect of germination on antioxidant activity, total phenolics, β-carotene, ascorbic acid and α-tocopherol contents of lead tree sprouts (Leucaena leucocephala (lmk.) de Wit). Int. Food Res. J. 23(1), 167–172 (2016)

    CAS  Google Scholar 

  49. R. Kowalski, G. Kowalska, U. Pankiewicz, A. Mazurek, M. Włodarczyk-Stasiak, M. Sujka, J. Wyrostek, The effect of an addition of marjoram oil on stabilization fatty acids profile of rapeseed oil. LWT-Food Sci. Technol. 109, 225–232 (2019)

    CAS  Google Scholar 

  50. A. Sagan, A. Blicharz-Kania, M. Szmigielski, D. Andrejko, P. Sobczak, K. Zawislak, A. Starek, Assessment of the properties of rapeseed oil enriched with oils characterized by high content of α-linolenic acid. Sustainability. 11(20), 5638 (2019)

    CAS  Google Scholar 

  51. Y. Xie, F. Wei, S. Xu, B. Wu, C. Zheng, X. Lv, Z. Wu, H. Chen, F. Huang, Profiling and quantification of lipids in cold-pressed rapeseed oils based on direct infusion electro spray ionization tandem mass spectrometry. Food Chem. 285, 194–203 (2019)

    CAS  PubMed  Google Scholar 

  52. S.V. Omosuli, D.A. Oloye, T.A. Ibrahim, Effect of drying methods on the physicochemical properties and fatty acid composition of moringa seeds oil. Prog. Food Nutr. Sci. 1, 27–32 (2017)

    Google Scholar 

  53. Y.C. Lee, S.W. Oh, J. Chang, I.H. Kim, Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chem. 84(1), 1–6 (2004)

    CAS  Google Scholar 

  54. G.C. Yen, Influence of seed roasting process on the changes in composition and quality of sesame (Sesame indicum) oil. J. Sci. Food Agric. 50(4), 563–570 (1990)

    CAS  Google Scholar 

  55. H. Yoshida, S. Takagi, Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil. J. Sci. Food Agric. 75(1), 19–26 (1997)

    CAS  Google Scholar 

  56. R.A. Moreau, K.B. Hicks, M.J. Powell, Effects of heat pretreatment on the yield and composition of oil extracted from corn fiber. J. Agric. Food Chem. 47(7), 2867–2871 (1999)

    Google Scholar 

Download references

Acknowledgements

The first author is most grateful for the financial support provided by the Ministry of Higher Education and Scientific Research, Egypt, and the technical support provided by the members of the Working Group of Lipid Research at the Department for Safety and Quality for Cereals in Detmold, Germany of the Max-Rubner-Institut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abd El-Baset Salama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, M.A.EB., Owon, M., Osman, M. et al. Effect of germination and roasting on oil profile of Moringa oleifera and Moringa peregrina seeds. Food Measure 14, 2220–2229 (2020). https://doi.org/10.1007/s11694-020-00469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00469-2

Keywords

Navigation