Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Persimmon flours as functional ingredients in spaghetti: chemical, physico-chemical and cooking quality

  • 13 Accesses


The aims of the current work were to enrich durum wheat semolina spaghetti with two types of persimmon flours (from cv. “Rojo Brillante” and “Triumph”) obtained from persimmon juice coproducts, at two concentrations (3% and 6%), to evaluate their chemical composition, physicochemical properties and cooking quality and to asses if they can be detected as different from control wheat semolina spaghetti (without any persimmon flours added) by sensory analysis. Persimmon flour enriched spaghetti had higher total dietary fiber than control spaghetti, which allows applying the nutritional claim ‘source of fiber”. The addition of persimmon flours also increased their total yellow content (related to carotenoid content) in a dose-dependent way, which produced a higher yellow colour, typical and well appreciated by consumers in this type of pasta. Another positive characteristic of these spaghetti enriched with persimmon flours is that they need a short optimum cooking time in comparison with control spaghetti without it imply any significant change in their cooking quality. The type of persimmon flour and its concentration caused differences in colour of uncooked and cooked spaghetti, optimum cooking time, total organic matter, weight increase, fracturability and stickiness. Furthermore, 3% spaghetti formulations were not different from the control by sensory evaluation. In conclusion, the enrichment of durum wheat semolina spaghetti with persimmon flours allowed the valorization of persimmon coproducts and the production of spaghetti with similar cooking quality to traditional durum wheat semolina spaghetti, furthermore, the best results were obtained when persimmon flour from ‘Rojo Brillante’ was added at 3%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    O. Patiño-Rodríguez, L.A. Bello-Pérez, P.C. Flores-Silva, M.M. Sánchez-Rivera, C.A. Romero-Bastida, LWT-Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2017.12.025

  2. 2.

    B. Ancos, E. Gonzalez, M.P. Cano, J. Agric. Food Chem. (2000). https://doi.org/10.1021/jf990911w

  3. 3.

    A. Mir-Marqués, M.L. Domingo, M. Cervera, M. De la Guardia, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.09.076

  4. 4.

    S. Gorinstein, G. Kulasek, E. Bartnikowska, M. Leontowicz, M. Zemser, M. Morawiec, S. Trakhtenberg, J. Nutr. Biochem. (1998). https://doi.org/10.1016/S0955-2863(98)00003-5

  5. 5.

    S. Fushimi, T. Miyazawa, F. Kimura, K. Nakagawa, G.C. Burdeos, T. Miyazawa, J. Nutr. Sci. Vitaminol (Tokyo). (2015). https://doi.org/10.3177/jnsv.61.90

  6. 6.

    G.N. Kim, M.R. Shin, S.H. Shin, A.R. Lee, J.Y. Lee, B.I. Seo, M.Y. Kim, T.H. Kim, J.S. Noh, M.H. Rhee, S.S. Roh, Biomed. Res. Int. (2016). https://doi.org/10.1155/2016/1723042

  7. 7.

    Y. Ahn, M. R. Gebereamanuel, E. K. Oh, K. Oran , J. Nutr. Health. (2017). https://doi.org/10.4163/jnh.2017.50.3.225

  8. 8.

    WHO, Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization. (2013) https://www.who.int/nmh/events/ncd_action_plan/en/ Accessed 22 March 2018.

  9. 9.

    FAOSTAT, Item: Production: crops: persimmons; area: world; from 2006 to 2016 year. Item: Production: crops: persimmon; area: world from 2016 year. (2017) https://www.fao.org/faostat/en/#data/QC/visualize. Accessed 29 Jan 2017.

  10. 10.

    R. Lucas-González, M. Viuda-Martos, J.A. Pérez-Álvarez, J. Fernández-López, Plant Foods Hum. Nutr. (2017). https://doi.org/10.1007/s11130-016-0592-z

  11. 11.

    R. Lucas-González, J. Fernández-López, J.A. Pérez-Álvarez, M. Viuda-Martos, J. Sci. Food Agric. (2018). https://doi.org/10.1002/jsfa.8487

  12. 12.

    A. Gull, K. Prasad, P. Kumar, LWT-Food. Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.03.008

  13. 13.

    G.M. Bastos, M.S.S. Júnior, M. Caliari, A.L.A. Pereira, C.C. De Morais, M.R.H. Campos, LWT -Food Sci. Technol. (2016). https://doi.org/10.1016/j.lwt.2015.07.067

  14. 14.

    L. Padalino, A. Conte, L. Lecce, D. Likyova, V. Sicari, T.M. Pellicanò, M. Poiana, M.A. Del Nobile (2017) Czech. J. Food Sci. https://doi.org/10.17221/171/2016-CJFS

  15. 15.

    B. Biernacka, D. Dziki, U. Gawlik-Dziki, R. Ròżyło, M. Siastała, LWT -Food. Sci. Technol. (2017). https://doi.org/10.1016/j.lwt.2016.11.042

  16. 16.

    C. Aranibar, N.B. Pigni, M. Martinez, A. Aguirre, P. Ribotta, D. Wunderlin, R. Borneo, LWT -Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2017.11.003

  17. 17.

    E. Agama-Acevedo, L.A. Bello-Pérez, G. Pacheco-Vargas, J. Tovar, S.G. Sáyago-Ayerdi, J. Food Process. Preserv. (2019). https://doi.org/10.1111/jfpp.14012

  18. 18.

    L. Deng, E.M. Elias, F.A. Manthey, Cereal Chem. (2017). https://doi.org/10.1094/CCHEM-03-17-0064-N

  19. 19.

    N. Aravind, M. Sissons, N. Egan, C. Fellows, Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2011.07.042

  20. 20.

    AOAC, Official methods of analysis of AOAC International, 18th ed (Association of Official Analytical Chemists, Arlington VA, 2007).

  21. 21.

    A. Cavazza, C. Corradini, M. Rinaldi, P. Salvadeo, C. Borromei, R. Massini, Food Bioprocess Technol. (2013). https://doi.org/10.1007/s11947-012-0906-6

  22. 22.

    AACC, American Association of Cereal Chemist International Approved Method 14-50.01. Determination of pigments. (AACC International, St Paul, MN, 1999).

  23. 23.

    APHA, Compendium of methods for the microbiological examinations of foods (American Public Health Association Press, Washington, 2015).

  24. 24.

    E. Cocci, G. Sacchetti, M. Vallicelli, A. Angioloni, M. Dalla Rosa, J. Food Eng. (2008). https://doi.org/10.1016/j.jfoodeng.2007.08.013

  25. 25.

    A. Menger, Crucial points of view concerning the execution of pasta cooking tests and their evaluation. Comptes Rendus Proceedings of ICC International Symposium: Matières Premières et Pâtes Alimentaires, p. 53. Roma: Istituto Nazionale della Nutrizione. (1979).

  26. 26.

    J.A. Delcour, I.J. Joye, B. Pareyt, E. Wilderjans, K. Brijs, B. Lagrain, Annu. Rev. Food Sci. Technol. (2012). https://doi.org/10.1146/annurev-food-022811-101303

  27. 27.

    M.G. D’Egidio, E. De Stefanis, S. Fortini, G. Galterio, S. Nardi, D. Sgrulletta, A. Bozzini, Standardization of cooking quality analysis in macaroni and pasta products. Cereal Food World 27, 367e–368e (1982)

  28. 28.

    ISO 8589, Sensory Analysis- General guidance for the desing of test rooms. (International Standard, Geneve, Switzerland, 2007).

  29. 29.

    ISO 4120, Sensory analysis—Methodology—Triangle test. (International Standard, Geneve, Switzerland, 2004).

  30. 30.

    V. Ntuli, P. Chatanga, R. Kwiri, G.H. Tendekayi, G. Jephris, M. Taole, P.R. Portia, Afr. J. Microbiol. Res. (2017). https://doi.org/10.5897/ajmr2016.8130

  31. 31.

    Ministero della Sanità. Norme igienico-sanitarie sulla lavorazione e conservazione delle paste alimentari. Circolare del Ministero della Sanità 3 agosto 1985, n. 32. (1985)

  32. 32.

    B. Gatta, M. Rutigliano, L. Padalino, A. Conte, M.A. Del Nobile, A. Di Luccia, LWT-Food Sci. Technol. (2017). https://doi.org/10.1016/j.lwt.2017.06.013

  33. 33.

    L. Mayor, A.M. Sereno, J. Food Eng. (2004). https://doi.org/10.1016/S0260-8774(03)00144-4

  34. 34.

    E. Carini, E. Curti, E. Spotti, E. Vittadini, Food Bioprocess Technol. (2012). https://doi.org/10.1007/s11947-010-0476-4

  35. 35.

    L. Padalino, C. Costa, A. Conte, M.G. Melilli, C. Sillitti, R. Bognanni, S.A. Raccuia, M.A. Del Nobile, Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2017.05.081

  36. 36.

    X. Lu, M.A. Brennan, L. Serventi, J. Liu, W. Guan, C.S. Brennan, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.04.130

  37. 37.

    EC. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of the European Union L404, 9–25. (2006)

  38. 38.

    L. Padalino, M. Mastromatteo, L. Lecce, F. Cozzolino, M.A. Del Nobile, J. Cereal Sci. (2013). https://doi.org/10.1016/j.jcs.2012.12.010

  39. 39.

    L. Paznocht, Z. Kotíková, M. Šulc, J. Lachman, M. Orsák, M. Eliášová, P. Martinek, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.07.151

  40. 40.

    J. Martínez-Girón, A.M. Figueroa-Molano, L.E. Ordóñez-Santos, Food Sci. Technol. (2017). https://doi.org/10.1590/1678-457x.14916

  41. 41.

    A. Albors, M.D. Raigon, M.D. García-Martinez, M.E. Martín-Esparza, LWT-Food. Sci. Technol. (2016). https://doi.org/10.1016/j.lwt.2016.07.047

  42. 42.

    J.A. Delcour, J. Vansteelandt, M.C. Hythier, J. Abècassis, M. Sindic, C. Deroanne, J. Agric. Food Chem. (2000). https://doi.org/10.1021/jf991051m

  43. 43.

    S. Chillo, J.A. Monro, S. Mishra, C.J. Henry, Int. J. Food Sci. Nutr. (2010). https://doi.org/10.3109/09637480903476423

  44. 44.

    A.R. Islas-Rubio, A.M. Calderón de la Barca, F. Cabrera-Chávez, A.G. Cota-Gastélum, T. Beta, LWT-Food. Sci. Technol. (2014). https://doi.org/10.1016/j.lwt.2014.01.014

  45. 45.

    H. Chiron, P. Roussel, Handbook of Food Science and Technology 3: Food Biochemistry and Technology (Wiley, Hoboken, 2016)

Download references


The authors wish to thank ERASMUS Program for supporting the mobility grant of one of the authors (R. Lucas-González).

Author information

Conceptualization: RL, MVM, JAPA, CCL, JFL and GS; Methodology: RL, BS and MS; Formal analysis and investigation: RL, MVM, JFL and GS; Writing—original draft preparation: RL and JFL; All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Funding acquisition: JAPA and CCL; Supervision: JFL and GS.

Correspondence to Juana Fernández-López.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J.Á. et al. Persimmon flours as functional ingredients in spaghetti: chemical, physico-chemical and cooking quality. Food Measure (2020). https://doi.org/10.1007/s11694-020-00411-6

Download citation


  • Kaki
  • Co-products
  • Spaghetti
  • Cooking quality
  • Fiber
  • Yellow pigments