Skip to main content
Log in

Effect of sprouting time on dough and cookies properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The role of sprouting in improving cereals nutritional properties is known. However its use in baked products is limited due the functional modifications occurring. In this study, the use of whole wheat flour sprouted for 24 and 48 h sprouted whole wheat flour (SWWF), and SWWF-refined flour blends (50:50) in cookies elaboration was investigated. Sprouting decreased water holding capacity and swelling volume and increased oil absorption capacity (OAC) gradually with sprouting time. For the dough, an increase in visco-elastic moduli (G′ and G′′) was recorded when whole wheat flour (WWF) and SWWF were used instead refined flour. However, no significant differences were observed between SWWF, weather for 24 or 48 h, and raw WWF. Regarding cookies, both WWF and SWWF decreased spread factor and increased hardness compared to control. Cookies color parameters were also affected with a decrease in lightness (L*) and yellowness (b*) and an increase in redness (a*). Cookie color changes were more pronounced with 100% 48 h sample. Despite these changes, consumers overall acceptability was improved when both WWF and SWWF were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. B. Baumgartner, B. Ozkaya, I. Saka, H. Ozkaya, J. Cereal Sci. 80, 24–30 (2018)

    CAS  Google Scholar 

  2. R.H. Liu, J. Cereal Sci. 46, 207–219 (2007)

    CAS  Google Scholar 

  3. A. Fardet, Nutr. Res. Rev. 23, 65–134 (2010)

    CAS  PubMed  Google Scholar 

  4. R.Y. Gan, W.Y. Lui, K. Wu, C.L. Chan, S.H. Dai, Z.Q. Sui, H. Corke, Trends Food Sci Technol. 59, 1–14 (2017)

    CAS  Google Scholar 

  5. E. Lemmens, A.V. Moroni, J. Pagand, P. Heirbaut, A. Ritala, Y. Karlen, K.A. Le, H.C. Van den Broeck, F.J. Brouns, N. De Brier, J.A. Delcour, Compr. Rev. Food Sci. Food Saf. 18, 305–328 (2018)

    Google Scholar 

  6. L. Plaza, B. De Ancos, M.P. Cano, Eur Food Res Technol. 216, 138–144 (2003)

    CAS  Google Scholar 

  7. L. Bohn, A.S. Meyer, S.K. Rasmussen, J. Zhejiang Univ. Sci. B 9, 165–191 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Zilic, M. Jankovic, M. Barac, M. Pesic, A. Konic-Ristic, V. Hadzi-Tascovic Sukalovic, Food Funct 7, 4323–4331 ( 2016)

    CAS  PubMed  Google Scholar 

  9. K.N. Jan, N.K. Panesar, S. Singh, LWT-Food. Sci. Technol. 93, 573–582 (2018)

    CAS  Google Scholar 

  10. B. Pareyt, J.A. Delcour, Crit. Rev. Food. Sci. Nutr. 48, 824–839 (2008)

    CAS  PubMed  Google Scholar 

  11. B.D. Rao, D.B. Kulkarni, C. Kavitha, Food Chem. 238, 82–86 (2018)

    CAS  PubMed  Google Scholar 

  12. T. Liu, G.G. Hou, M. Cardin, L. Marquart, A. Dubat, LWT-Food Sci. Technol. 77, 1–7 (2017)

    Google Scholar 

  13. A. Marti, G. Cardone, M.A. Pagani, M.C. Casiraghi, LWT-Food Sci. Technol. 89, 237–243 (2018)

    CAS  Google Scholar 

  14. M. Swica, D. Dziki, U. Gawlik-Dziki, Food Chem. 228, 643–648 (2017)

    Google Scholar 

  15. S. Yaqoob, W.N. Baba, F.A. Masoodi, R. Bazaz, J Food Meas Charact. 12, 1253–1265 (2018)

    Google Scholar 

  16. R.B.H. Chedli, S.B. M’Barek, A. Yahyaoui, Z. Kehel, S. Rezgui, Chil J. Agric. Res. 78, 559–568 (2018)

    Google Scholar 

  17. S. Jribi, M. Sahagùn, H. Debbabi, M. Gomez, Int. J. Food Sci. Technol. 54, 2418–2724 (2019)

    Google Scholar 

  18. AACC International, Approved methods of the American Association of cereal chemists international. methods: 88–04 (WHC), 11th edn. (American Association of Cereal Chemists, Saint Paul, 2012)

    Google Scholar 

  19. M.J.Y. Lin, E.S. Humbert, F.W. Sosulski, J. Food Sci. 39, 368–370 (1974)

    Google Scholar 

  20. A. Bravo-Nuñez, M. Sahagun, P. Martinez, M. Gomez, Int. J. Food Sci. Technol. 53, 1452–1458 (2018)

    Google Scholar 

  21. C.M. Mancebo, P. Rodriguez, M. Gomez, LWT-Food Sci. Technol. 67, 127–132 (2016)

    CAS  Google Scholar 

  22. F. Cornejo, C.M. Rosell, J. Food Sci. Technol. 52, 6591–6598 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Q. Li, R. Liu, T. Wu, M. Wang, M. Zhang, J Agric Food Chem. 64, 8735–8744 (2016)

    CAS  PubMed  Google Scholar 

  24. H. Roozendaal, M. Abu-hardan, R.A. Frazier, J. Food Eng. 111, 606–611 (2012)

    CAS  Google Scholar 

  25. P.V. Hung, T. Maeda, S. Yamamoto, N. Morita, J. Sci. Food Agric. 92, 667–672 (2011)

    PubMed  Google Scholar 

  26. M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Food Chem. 124, 411–421 (2011)

    CAS  Google Scholar 

  27. A. Singh, S. Sharma, B. Singh, J. Cereal Sci. 76, 131–139 (2017)

    CAS  Google Scholar 

  28. A.K. Singh, J. Rehal, A. Kaur, G. Jyot, Crit. Rev. Food Sci. Nutr. 55, 1575–1589 (2015)

    CAS  PubMed  Google Scholar 

  29. H. Singh, N. Singh, L. Kaur, S.K. Sawena, J. Food Eng. 47, 23–29 (2001)

    Google Scholar 

  30. S. Singh, N. Singh, Food Hydrocoll. 33, 342–348 (2013)

    CAS  Google Scholar 

  31. P. Koehler, G. Hartmann, H. Wieser, M. Rychlik, J. Agric. Food Chem. 55, 4678–4683 (2007)

    CAS  PubMed  Google Scholar 

  32. X. Li, H. Hu, F. Xu, Z. Liu, L. Zhang, H. Zhang, Int. J. Food Sci. Technol. 54, 1777–1786 (2018)

    CAS  Google Scholar 

  33. M.K. Demir, J. Agric. Sci. 21, 100–107 (2015)

    Google Scholar 

  34. M.L. Sudha, R. Vetrimani, K. Leelavathi, Food Chem. 100, 1365–1370 (2007)

    CAS  Google Scholar 

  35. R. Jan, D.C. Saxena, S. Singh, LWT-Food Sci. Technol. 71, 281–287 (2016)

    CAS  Google Scholar 

  36. A. Chauhan, D.C. Saxena, S. Singh, Cogent Food Agricult (2016). https://doi.org/10.1080/23311932.2015.1125773

    Article  Google Scholar 

  37. C.M. Mancebo, J. Picón, M. Gómez, LWT-Food. Sci Technol. 64, 264–269 (2015)

    CAS  Google Scholar 

  38. H.J. Chung, A. Cho, S.T. Lim, LWT-Food Sci. Technol. 57, 260–266 (2014)

    CAS  Google Scholar 

  39. C.M. Mancebo, P. Rodríguez, M.M. Martínez, M. Gómez, Int J. Food Sci. Technol. 53, 129–136 (2018)

    CAS  Google Scholar 

  40. C.M. Ajila, K. Leelavathi, U.J.S. Prasada Rao, J. Cereal Sci. 48, 319–326 (2008)

    CAS  Google Scholar 

  41. Y. Mak, R.D. Willows, T.H. Roberts, C.W. Wrigley, P.J. Sharp, L. Copeland, Cereal Chem. 86, 281–289 (2009)

    CAS  Google Scholar 

  42. S. Jribi, H. Molnar, N. Adanyi, S. Marzougui, Z. Naar, H. Debbabi, Int. J. Innov. Approach Agric. Res. 3, 87–95 (2019)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Tunisian Ministry of Higher Education and Scientific Research for granting Sarra JRIBI scholarship. M. Sahagún would like to thank predoctoral fellowship from the University of Valladolid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarra Jribi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jribi, S., Sahagún, M., Belorio, M. et al. Effect of sprouting time on dough and cookies properties. Food Measure 14, 1595–1600 (2020). https://doi.org/10.1007/s11694-020-00407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00407-2

Keywords

Navigation