Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rapid identification and quantification of adulteration in Dendrobium officinale using nuclear magnetic resonance spectroscopy combined with least-squares support vector machine

Abstract

Dendrobium officinale (D. officinale) is commonly used as a functional food or herbal medicine worldwide, but often adulterated with low-priced materials. In this study, we attempted to develop an integrated method of least-squares support vector machine and nuclear magnetic resonance spectroscopy (LS-SVM-NMR) to identify and quantify the adulteration of D. officinale powder. We found that LS-SVM-NMR can identify the adulterated D. officinale powder with an overall accuracy of 100% and quantify its purity with an R2 of 0.999 and RMSE of 1.410 at model validation phase. In addition, our results from the double-blinded test revealed that LS-SVM-NMR can yield a classification accuracy of 98% for distinguishing the adulterated D. officinale powder, and predict its purity with an R2 of 0.998 and RMSE of 2.660. Moreover, adulteration evaluation reports can be obtained in 10 min. Therefore, LS-SVM-NMR proposed herein could be used as a promising and time-saving tool for the quality evaluation of D. officinale or even other food products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    L. Xia, X. Liu, H. Guo, H. Zhang, J. Zhu, F. Ren, J. Func, Foods 4, 294 (2012)

  2. 2.

    X. Xing, S.W. Cui, S. Nie, G.O. Phillips, H.D. Goff, Q. Wang, Bioact. Carbohydr. Diet. Fibre 1, 131 (2013)

  3. 3.

    L.H. Pan, X.F. Li, M.N. Wang, X.Q. Zha, X.F. Yang, Z.J. Liu et al., Int. J. Biol. Macromol. 64, 420 (2014)

  4. 4.

    T.B. He, Y.P. Huang, L. Yang, T.T. Liu, W.Y. Gong, X.J. Wang et al., Int. J. Biol. Macromol. 83, 34 (2016)

  5. 5.

    G.Y. Zhang, S.P. Nie, X.J. Huang, J.L. Hu, S.W. Cui, M.Y. Xie, G.O. Phillips, J. Agric. Food Chem. 64, 2485 (2015)

  6. 6.

    S. Bansal, A. Singh, M. Mangal, A.K. Mangal, S. Kumar, Crit. Rev. Food Sci. Nutr. 57, 1174 (2017)

  7. 7.

    T.G. Kang, D.Q. Dou, J.K. Zhang, Planta Med. 74, 10 (2008)

  8. 8.

    X. Zhao, F. Ma, P. Li, G. Li, L. Zhang, Q. Zhang, W. Zhang, X. Wang, Food Chem. 176, 465 (2015)

  9. 9.

    M. Alizadeh, S. Pirsa, N. Faraji, Food Anal. Methods 10, 2092 (2017)

  10. 10.

    F. Ghasemi, S. Pirsa, M. Alizadeh, F. Mohtarami, Sep. Sci. Technol. 53, 117 (2018)

  11. 11.

    L. Zeng, X. Wu, Y. Li, D. Lu, C. Sun, Anal. Methods 7, 543 (2015)

  12. 12.

    P. Mishra, C.B. Cordella, D.N. Rutledge, P. Barreiro, J.M. Roger, B. Diezma, J. Food Eng. 168, 7 (2016)

  13. 13.

    S. Lohumi, S. Lee, H. Lee, B.K. Cho, Trends Food Sci. Technol. 46, 85 (2015)

  14. 14.

    R. Hachem, G. Assemat, N. Martins, S. Balayssac, V. Gilard, R. Martino, M. Malet-Martino, J. Pharmaceut. Biomed. Anal. 124, 34 (2016)

  15. 15.

    B. Druml, W. Mayer, M. Cichna-Markl, R. Hochegger, Food Chem. 178, 319 (2015)

  16. 16.

    G. Ding, G. Xu, W. Zhang, S. Lu, X. Li, S. Gu, X.Y. Ding, Eur. Food Res. Tech. 227, 1283 (2008)

  17. 17.

    H. Xu, B. Hou, J. Zhang, M. Tian, Y. Yuan, Z. Niu, X. Ding, Int. J. Food Sci. Tech. 47, 1695 (2012)

  18. 18.

    X. Dong, C. Jiang, Y. Yuan, D. Peng, Y. Luo, Y. Zhao, L. Huang, J. Sci. Food Agric. 98, 549 (2018)

  19. 19.

    L. Yang, W.R. Wu, H. Zhou, H.L. Lai, F. Fu, Chin. J. Nat. Med. 17, 337 (2019)

  20. 20.

    C. Chu, H. Yin, L. Xia, D. Cheng, J. Yan, L. Zhu, Molecules 19, 3718 (2014)

  21. 21.

    K.Z. Yu, H. Yan, H.C. Tai, N.P. Zhang, X.L. Cheng, Z.X. Guo et al., Microsc. Res. Tech. 80, 745 (2017)

  22. 22.

    Y. Yuan, X. Liu, J. Wang, J. Zhang, Microsc. Res. Tech. 82, 483 (2019)

  23. 23.

    Y. Wei, W. Fan, X. Zhao, W. Wu, H. Lu, Anal. Lett. 48, 817 (2015)

  24. 24.

    Y. Wang, Z.T. Zuo, T. Shen, H.Y. Huang, Y.Z. Wang, Anal. Lett. 51, 2792 (2018)

  25. 25.

    Z. Ye, J.R. Dai, C.G. Zhang, Y. Lu, L.L. Wu, A.G. Gong et al., Evid. Based Complement. Alternat. Med. 2017, 8647212 (2017)

  26. 26.

    U. Holzgrabe, NMR Spectroscopy in Pharmaceutical Analysis (Elsevier, Amsterdam, 2017)

  27. 27.

    E. Destandau, T. Michel, C. Elfakir, R. Soc. Chem. 21, 113 (2013)

  28. 28.

    F. Savorani, G. Tomasi, S.B. Engelsen, J. Magn. Reson. 202, 190 (2009)

  29. 29.

    J. Xia, I.V. Sinelnikov, B. Han, D.S. Wishart, Nucl. Acids Res. 43, W251 (2015)

  30. 30.

    H. Zheng, H.F. Lu, Comput. Electron. Agric. 83, 47 (2012)

  31. 31.

    X. Ding, L. Xu, Z. Wang, K. Zhou, H. Xu, Y. Wang, Planta Med 68, 191 (2002)

  32. 32.

    X. Ding, Z. Wang, K. Zhou, L. Xu, H. Xu, Y. Wang, Planta Med 69, 587 (2003)

  33. 33.

    T. Li, J. Wang, Z. Lu, J. Biochem. Biophys. Meth. 62, 111 (2005)

  34. 34.

    S.C.W. Sze, K.Y.B. Zhang, P.C. Shaw, P.P.H. But, T.B. Ng, Y. Tong, Biotechnol. Appl. Biochem. 49, 149 (2008)

  35. 35.

    S. Zhu, Z. Niu, Q. Xue, H. Wang, X. Xie, X. Ding, Acta Pharm. Sin. B 8, 969 (2018)

  36. 36.

    Y. Zhao, L. Zha, B. Han, H. Peng, Microsci. Res. Technol. 81, 1191 (2018)

  37. 37.

    J.A.K. Suykens, J. Vandewalle, Neural Proc. Lett. 9, 293 (1999)

  38. 38.

    J.A.K. Suykens, J. Vandewalle, Int. J. Circ. Theor. Appl. 27, 605 (2015)

  39. 39.

    G. Zyskind, J. Am. Stat. Assoc. 58, 1125 (1963)

Download references

Acknowledgements

This study was supported by the Qianjiang Talent Project of Zhejiang Province (No. QJD1802023) and National Natural Science Foundation of China (Nos.: 21575105, 81503335).

Author information

HZ and HCG contributed to experimental design. LLP and LLJ contributed to sample collection. LLP and LLJ contributed to sample preparation and metabolomics data acquisition. LLJ and HZ contributed to data analysis, model development and writing. All authors have read, revised and approved the final manuscript.

Correspondence to Hong Zheng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Pan, L., Gao, H. et al. Rapid identification and quantification of adulteration in Dendrobium officinale using nuclear magnetic resonance spectroscopy combined with least-squares support vector machine. Food Measure (2020). https://doi.org/10.1007/s11694-020-00392-6

Download citation

Keywords

  • Adulteration
  • Food product
  • NMR
  • Quality evaluation
  • LS-SVM