Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions

  • 4 Accesses


In the current study, we planned to produce a novel nanoemulsion based drug delivery system containing RCEO (RCEO-NE) in order to immunize its pharmaceutical properties and investigate its antioxidant and anticancer potentials. For this purpose, the Ultrasonication method was used to produce RCEO-NE. Then, we characterized and evaluated RCEO-NE properties, antioxidant and anticancer activities, respectively. Atomic force microscopy (AFM) and dynamic light scattering (DLS) methods were applied to characterize the particles. Finally, we designed a dose-dependent treatment plane for 48 h incubation to evaluate the RCEO-NE anticancer impacts on HepG2 cells compared with the normal L929 cell line. We measured the cytotoxic activity, Cas-3 gene expression, and cell cycle status in HepG2 cells as the anticancer indicators. The obtained results demonstrated that the 81.4 nm droplets of RCEO-NE with polydispersity index 0.41 revealed appreciable antioxidant activities and can significantly reduce the HepG2 cells’ viability (p < 0.001). The increasing treatment doses of RCEO-NE up-regulates the expression of Cas-3 and increases the SubG1 peaks in treated HepG2 cells. Also, they showed a cell-specific cytotoxic effect among the cancer HepG2 and normal L929 cells (p < 0.001). Our novel RCEO-NE system due to its cell-specific high performance antioxidant, cytotoxic and individual apoptotic activities for HepG2 cancer cells has the potential to be used biopreservative in food industries and applied as an efficient cancer therapy strategy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    C. Della Corte, M. Triolo, M. Iavarone, A. Sangiovanni, Early diagnosis of liver cancer: an appraisal of international recommendations and future perspectives. Liver Int. 36(2), 166–176 (2016)

  2. 2.

    J.G. Chen, S.W. Zhang, Liver cancer epidemic in China: past, present and future. Semin. Cancer Biol. 21, 59–69 (2011)

  3. 3.

    Y. Midorikawa, Y. Sugiyama, H. Aburatani, Molecular targets for liver cancer therapy: from screening of target genes to clinical trials. Hepatol. Res. 40(1), 49–60 (2010)

  4. 4.

    D. Pratico, L. Iuliano, S. Basili, D. Ferro, C. Camastra, C. Cordova, G.A. FitzGerald, F. Violi, Enhanced lipid peroxidation in hepatic cirrhosis. J. Investig. Med. 46(2), 51–57 (1998)

  5. 5.

    A. Sharma, R. Houshyar, P. Bhosale, J.-I. Choi, R. Gulati, C. Lall, Chemotherapy induced liver abnormalities: an imaging perspective. Clin. Mol. Hepatol. 20(3), 317–326 (2014). https://doi.org/10.3350/cmh.2014.20.3.317

  6. 6.

    A. Hosseini, A. Ghorbani, Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J. Phytomed. 5(2), p. 84 (2015)

  7. 7.

    S.E. Natheer, Antimicrobial and biochemical analysis of some spices extract against food spoilage pathogens. Internet J. Food Saf. 12, 71–75 (2010)

  8. 8.

    O.O. Owolabi, D.B. James, I. Sani, B.T. Andongma, O.O. Fasanya, B. Kure, Phytochemical analysis, antioxidant and anti-inflammatory potential of Feretia apodanthera root bark extracts. BMC Complement. Altern. Med. 18(1), 12–12 (2018). https://doi.org/10.1186/s12906-017-2070-z

  9. 9.

    A.P. Silva, L.C. Nascimento da Silva, M. da Fonseca, S. Caíque, J.M. de Araújo, M.T. Correia, Md.S. Cavalcanti, V.L. Lima, Antimicrobial activity and phytochemical analysis of organic extracts from Cleome spinosa Jaqc. Front. Microbiol. 7, p. 963 (2016)

  10. 10.

    C.I. Alugah, O. Ibraheem, Whole plant screenings for flavonoids and tannins contents in castor plant (Ricinus communis L.) and evaluation of their biological activities. Int. J. Herb. Med. 2, 68–76 (2014)

  11. 11.

    S. Khafagy, Z. Mahmoud, N.E. Salam, Coumarins and flavonoids of Ricinus communis growing in Egypt. Planta Med. 37(10), 191–191 (1979)

  12. 12.

    C.P. Vermeer, P. Nastold, R. Jetter, Homologous very-long-chain 1, 3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L. Phytochemistry 62(3), 433–438 (2003)

  13. 13.

    K. Ohishi, K. Toume, M.A. Arai, S.K. Sadhu, F. Ahmed, T. Mizoguchi, M. Itoh, M. Ishibashi, Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α. Bioorg. Med. Chem. 22(17), 4597–4601 (2014)

  14. 14.

    W.-K. You, I. Kasman, D.D. Hu-Lowe, D.M. McDonald, Ricinus communis agglutinin I leads to rapid down-regulation of VEGFR-2 and endothelial cell apoptosis in tumor blood vessels. Am. J. Pathol. 176(4), 1927–1940 (2010), https://doi.org/10.2353/ajpath.2010.090561

  15. 15.

    Z. Mahmood, M. Jahangir, M. Liaquat, S.W. Ahmad Shah, M. Mumtaz Khan, R. Stanley, B. D’Arcy, Potential of nano-emulsions as phytochemical delivery system for food preservation. Pak. J. Pharm. Sci. 30(6), p. 2259 (2017)

  16. 16.

    P.V. Rao, D. Nallappan, K. Madhavi, S. Rahman, L. Jun Wei, S.H. Gan, Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid. Med. Cell. Longev. (2016). https://doi.org/10.1155/2016/3685671

  17. 17.

    C. Solans, P. Izquierdo, J. Nolla, N. Azemar, M.J. Garcia-Celma, Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10(3–4), 102–110 (2005)

  18. 18.

    A.A. Date, N. Desai, R. Dixit, M. Nagarsenker, Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine 5(10), 1595–1616 (2010)

  19. 19.

    S. Mahdi Jafari, Y. He, B. Bhandari, Nano-emulsion production by sonication and microfluidization—a comparison. Int. J. Food Prop. 9(3), 475–485 (2006)

  20. 20.

    S. Kentish, T. Wooster, M. Ashokkumar, S. Balachandran, R. Mawson, L. Simons, The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9(2), 170–175 (2008)

  21. 21.

    D.K. Sarker, Engineering of nanoemulsions for drug delivery. Curr. Drug Deliv. 2(4), 297–310 (2005)

  22. 22.

    K.M. Wasan, Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery: Basic Principles and Biological Examples (Wiley, Hoboken, 2007)

  23. 23.

    P. Borthakur, P.K. Boruah, B. Sharma, M.R. Das, in Emulsions, ed. by A. M. Grumezescu (Academic Press, Cambridge, 2016), 153–191. https://doi.org/10.1016/B978-0-12-804306-6.00005-2

  24. 24.

    M. Jaiswal, R. Dudhe, P.K. Sharma, Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2), 123–127 (2015), https://doi.org/10.1007/s13205-014-0214-0

  25. 25.

    E.C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, R. Zutshi, Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. 56(9), 1291–1314 (2004)

  26. 26.

    P.P. Constantinides, J. Han, S.S. Davis, Advances in the use of tocols as drug delivery vehicles. Pharm. Res. 23(2), 243–255 (2006)

  27. 27.

    P.P. Constantinides, M.V. Chaubal, R. Shorr, Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv. Drug Deliv. Rev. 60(6), 757–767 (2008)

  28. 28.

    R. Mahato, Nanoemulsion as targeted drug delivery system for cancer therapeutics. J. Pharm. Sci. Pharmacol. 3(2), 83–97 (2017), https://doi.org/10.1166/jpsp.2017.1082

  29. 29.

    G. Praveen Kumar, A. Divya, Nanoemulsion based targeting in cancer therapeutics. Med. Chem. 5, 272–284 (2015)

  30. 30.

    I. Khan, A. Bahuguna, P. Kumar, V.K. Bajpai, S.C. Kang, In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci. Rep. 8(1), 144–144 (2018), https://doi.org/10.1038/s41598-017-18644-9

  31. 31.

    A. Migotto, V.F. Carvalho, G.C. Salata, F.W. da Silva, C.Y.I. Yan, K. Ishida, L.V. Costa-Lotufo, A.A. Steiner, L.B. Lopes, Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv. 25(1), 654–667 (2018)

  32. 32.

    L. Portt, G. Norman, C. Clapp, M. Greenwood, M.T. Greenwood, Anti-apoptosis and cell survival: a review. Biochim. et Biophys. Acta (BBA) Mol. Cell Res. 1813(1), 238–259 (2011), https://doi.org/10.1016/j.bbamcr.2010.10.010

  33. 33.

    V. Ghosh, S. Saranya, A. Mukherjee, N. Chandrasekaran, Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J. Nanosci. Nanotechnol. 13(1), 114–122 (2013)

  34. 34.

    H. Sun, K. Liu, W. Liu, W. Wang, C. Guo, B. Tang, J. Gu, J. Zhang, H. Li, X. Mao, Q. Zou, H. Zeng, Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs. Int. J. Nanomed. 7, 5529–5543 (2012), https://doi.org/10.2147/IJN.S36071

  35. 35.

    E. Karimi, H.Z. Jaafar, A. Ghasemzadeh, Chemical composition, antioxidant and anticancer potential of Labisia pumila variety alata under CO2 enrichment. NJAS-Wagening. J. Life Sci. 78, 85–91 (2016)

  36. 36.

    J. Stetefeld, S.A. McKenna, T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8(4), 409–427 (2016)

  37. 37.

    M. Rana, H. Dhamija, B. Prashar, S. Sharma, Ricinus communis L.—a review. Int. J. PharmTech Res. 4(4), 1706–1711 (2012)

  38. 38.

    N. Sharma, M. Bansal, S. Visht, P. Sharma, G. Kulkarni, Nanoemulsion: a new concept of delivery system. Chron.&nbsp;Young Sci. 1(2), p. 2 (2010)

  39. 39.

    K. Ziani, Y. Chang, L. McLandsborough, D.J. McClements, Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J. Agric. Food Chem. 59(11), 6247–6255 (2011)

  40. 40.

    P. Farshi, M. Tabibiazar, M. Ghorbani, H. Hamishehkar, Evaluation of antioxidant activity and cytotoxicity of cumin seed oil nanoemulsion stabilized by sodium caseinate-guar gum. Pharm 23, 293–300 (2017)

  41. 41.

    C.-C. Yen, Y.-C. Chen, M.-T. Wu, C.-C. Wang, Y.-T. Wu, Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomed. 13, 669–680 (2018), https://doi.org/10.2147/IJN.S154824

  42. 42.

    U. Sakulku, O. Nuchuchua, N. Uawongyart, S. Puttipipatkhachorn, A. Soottitantawat, U. Ruktanonchai, Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 372(1–2), 105–111 (2009)

  43. 43.

    C. Anjali, Y. Sharma, A. Mukherjee, N. Chandrasekaran, Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manage. Sci. 68(2), 158–163 (2012)

  44. 44.

    M. Pant, S. Dubey, P. Patanjali, S. Naik, S. Sharma, Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegrad. 91, 119–127 (2014)

  45. 45.

    L. Salvia-Trujillo, A. Rojas-Graü, R. Soliva-Fortuny, O. Martín-Belloso, Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: effect of ultrasound processing parameters. Food Bioprocess Technol. 6(9), 2439–2446 (2013)

  46. 46.

    M.K. Anwer, S. Jamil, E.O. Ibnouf, F. Shakeel, Enhanced antibacterial effects of clove essential oil by nanoemulsion. J. Oleo Sci. 63, p. 347 (2014)

  47. 47.

    P. Bansal, R. Bansal, R. Sapra, Dietary phytochemicals in cell cycle arrest and apoptosis-an insight. J. Drug Deliv. Ther. (2012). https://doi.org/10.22270/jddt.v2i2.121

  48. 48.

    K. Fernald, M. Kurokawa, Evading apoptosis in cancer. Trends Cell Biol. 23(12), 620–633 (2013)

  49. 49.

    J.S. Dawane, V.A. Pandit, Understanding redox homeostasis and its role in cancer. J. Clin. Diagn. Res. 6(10), p. 1796 (2012)

  50. 50.

    R.J. DeBerardinis, J.J. Lum, G. Hatzivassiliou, C.B. Thompson, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 7(1), 11–20 (2008)

  51. 51.

    A. Lichota, K. Gwozdzinski, Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 19(11), p. 3533 (2018)

  52. 52.

    G. Pistritto, D. Trisciuoglio, C. Ceci, A. Garufi, G. D’Orazi, Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8(4), p. 603 (2016)

  53. 53.

    A. Sznarkowska, A. Kostecka, K. Meller, K.P. Bielawski, Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 8(9), p. 15996 (2017)

  54. 54.

    J.J. Bower, L.D. Vance, M. Psioda, S.L. Smith-Roe, D.A. Simpson, J.G. Ibrahim, K.A. Hoadley, C.M. Perou, W.K. Kaufmann, Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. NPJ Breast Cancer 3(1), p. 9 (2017)

  55. 55.

    A.G. Porter, R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6(2), 99–104 (1999), https://doi.org/10.1038/sj.cdd.4400476

  56. 56.

    M. Yousefzadi, A. Riahi-Madvar, J. Hadian, F. Rezaee, R. Rafiee, M. Biniaz, Toxicity of essential oil of Satureja khuzistanica: in vitro cytotoxicity and anti-microbial activity. J. Immunotoxicol. 11(1), 50–55 (2014)

  57. 57.

    D.D. Bou, J.H.G. Lago, C.R. Figueiredo, A.L. Matsuo, R.C. Guadagnin, M.G. Soares, P. Sartorelli, Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives. Molecules 18(8), 9477–9487 (2013)

  58. 58.

    S. Afoulous, H. Ferhout, E.G. Raoelison, A. Valentin, B. Moukarzel, F. Couderc, J. Bouajila, Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem. Toxicol. 56, 352–362 (2013)

  59. 59.

    H.P. Fogang, F. Maggi, L.A. Tapondjou, H.M. Womeni, F. Papa, L. Quassinti, M. Bramucci, L.A. Vitali, D. Petrelli, G. Lupidi, In vitro biological activities of seed essential oils from the cameroonian spices Afrostyrax lepidophyllus Mildbr. and Scorodophloeus zenkeri Harms rich in sulfur-containing compounds. Chem. Biodivers. 11(1), 161–169 (2014)

  60. 60.

    S. Keawsa-Ard, B. Liawruangrath, S. Liawruangrath, A. Teerawutgulrag, S.G. Pyne, Chemical constituents and antioxidant and biological activities of the essential oil from leaves of Solanum spirale. Nat. Prod. Commun. 7, p. 955 (2012)

  61. 61.

    A. Scarpa, A. Guerci, Various uses of the castor oil plant (Ricinus communis L.) a review. J. Ethnopharmacol. 5(2), 117–137 (1982)

  62. 62.

    B. Abew, S. Sahile, F. Moges, In vitro antibacterial activity of leaf extracts of Zehneria scabra and Ricinus communis against Escherichia coli and methicillin resistance Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 4(10), 816–820 (2014)

  63. 63.

    P. Vandita, N. Amin, P. Khyati, K. Monisha, Effect of phytochemical constituents of Ricinus communis, Pterocarpus santalinus, Terminalia belerica on antibacterial, antifungal and cytotoxic activity. Int. J. Toxicol. Pharmacol. Res. 5(2), 47–54 (2013)

  64. 64.

    P. Shokeen, P. Anand, Y.K. Murali, V. Tandon, Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem. Toxicol. 46(11), 3458–3466 (2008)

  65. 65.

    V. Nemudzivhadi, P. Masoko, In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid. Based Complement. Altern. Med. (2014). https://doi.org/10.1155/2014/625961

  66. 66.

    E. Prakash, D. Gupta, In vitro study of extracts of Ricinus communis Linn on human cancer cell lines. J. Med. Sci. Public Health 2(1), 15–20 (2014)

  67. 67.

    N.H. Hajrah, W.M. Abdul, S.M. Al-Garni, A. Sheikh, M.M.M. Ahmed, N. Hall, K.S. Saini, J.S. Mohammad Sabir, R.S. Bora, Gene expression profiling to elucidate the pharmacological and toxicological effects of Ricinus communis L. leaf extract in mammalian cells. Biotechnol. Biotechnol. Equip. 33, p. 397 (2019)

  68. 68.

    Hu. Rg, Z. Qw, L. Wy, An insight into the mechanism of cytotoxicity of ricin to hepatoma cell: roles of Bcl-2 family proteins, caspases, Ca2+‐dependent proteases and protein kinase C. J. Cell. Biochem. 81(4), 583–593 (2001)

  69. 69.

    Y. Endo, K. Tsurugi, T. Yutsudo, Y. Takeda, T. Ogasawara, K. Igarashi, Site of action of a Vero toxin (VT2) from Escherichia coli O157: H7 and of Shiga toxin on eukaryotic ribosomes: RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171(1–2), 45–50 (1988)

  70. 70.

    Y. Endo, K. Mitsui, M. Motizuki, K. Tsurugi, The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 262(12), 5908–5912 (1987)

Download references


The authors are grateful to the Islamic Azad University of Mashhad for the laboratory facilities.

Author information

Correspondence to Ehsan Karimi.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javanshir, A., Karimi, E., Maragheh, A.D. et al. The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions. Food Measure (2020). https://doi.org/10.1007/s11694-020-00385-5

Download citation


  • Ricinus communis L. essential oil (RCEO)
  • Hepatocellular carcinoma cells (HepG2)
  • Antioxidant potential
  • Anticancer activity