Advertisement

Mozafati date as a potential treasure of calcium and antioxidant compounds: assessment of these phytochemicals during development

  • Nafiseh Sheikhbahaei
  • Farkhondeh RezanejadEmail author
  • Seyed Mohammad Javad Arvin
Original Paper
  • 14 Downloads

Abstract

Developmental stages can influence tissue structure, chemical composition, sweetness, and flavor of date palm (Phoenix dactylifera L.) fruit. Mozafati is one of the most important commercial cultivars of date in Iran. However, the effects of developmental stages on the nutritional value of this cultivar are not known. Thus, this study attempted to provide a comprehensive analysis of various nutritional and biochemical properties of Mozafati cultivar. Anthocyanin and reducing sugars were found to increase during development while other phenolic compounds followed a downward trend. Antioxidant capacity of the fruits decreased during development; sucrose was not observed in any developmental stages. Eight phenolic compounds including gallic, chlorogenic, trans-ferulic, sinapic and p-coumaric acids, vanillin, catechin, and hesperidin were identified and quantified during development. At the first and second stages of development, the number of fruit polyphenolic compounds was higher compared to the last three stages. The results represented a higher level of sinapic acid (4.73 ± 0.74 mg/100 g of fresh weight), an important anxiolytic agent, in the Rutab stage of Mozafati cultivar. Hesperidin was also detected for the first time in the fruit of a date cultivar. Nutritional analysis of components and minerals introduced Mozafati date as a rich source of these elements. Most importantly, our findings highlight the importance of Mozafati date as a potential alternative source of calcium supplementation. The results of this study revealed the richness of Mozafati cultivar fruits in terms of many nutrients during developmental stages and the possibility of their usages in pharmaceutical or nutraceutical industries.

Keywords

Calcium Hesperidin Mozafati Phenolic compounds Phoenix dactylifera Reducing sugars 

Notes

Acknowledgements

Shahid Bahonar university of Kerman supported this research.

Compliance with ethical standards

Conflict of interest

All authors declare that there are no conflicts of interest pertaining to this research.

References

  1. 1.
    E.A. Amira, S.E. Behija, M. Beligh, L. Lamia, I. Manel, H. Mohamed, A. Lotfi, J. Agric. Food Chem. 60, 10896 (2012)CrossRefGoogle Scholar
  2. 2.
    V.M. Karizaki, J. Ethn. Foods 4, 204 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Hammouda, J.K. Chérif, M. Trabelsi-Ayadi, A. Baron, S. Guyot, J. Agric. Food Chem. 61, 3252 (2013)PubMedCrossRefGoogle Scholar
  4. 4.
    A. Farahnaky, H. Afshari-Jouybari, Sci. Hortic. (Amsterdam). 127, 313 (2011)CrossRefGoogle Scholar
  5. 5.
    I.A. Ahmed, A.W.K. Ahmed, R.K. Robinson, Food Chem. 54, 305 (1995)CrossRefGoogle Scholar
  6. 6.
    M.S. Baliga, B.R.V. Baliga, S.M. Kandathil, H.P. Bhat, P.K. Vayalil, Food Res. Int. 44, 1812 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Salman Haider, I.A. Khan, S.A. Naqvi, M.J. Jaskani, R.W. Khan, M. Nafees, F. Maryam, I. Pasha, Pakistan J. Agric. Sci. 50, 577 (2013)Google Scholar
  8. 8.
    R.A. Al-alawi, J.H. Al-mashiqri, J.S.M. Al-nadabi, B.I. Al-shihi, Front. Plant Sci. 8, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Al-Farsi, C. Alasalvar, A. Morris, M. Baron, F. Shahidi, J. Agric. Food Chem. 53, 7586 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    N. Chaira, M.I. Smaali, M. Martinez-Tomé, A. Mrabet, M.A. Murcia, A. Ferchichi, Int. J. Food Sci. Nutr. 60, 316 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    S. Rastegar, M. Rahemi, A. Baghizadeh, M. Gholami, Food Chem. 134, 1279 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    A. Mansouri, G. Embarek, E. Kokkalou, P. Kefalas, Food Chem. 89, 411 (2005)CrossRefGoogle Scholar
  13. 13.
    F. Biglari, A.F.M. AlKarkhi, A.M. Easa, Food Chem. 112, 998 (2009)CrossRefGoogle Scholar
  14. 14.
    M.A. Awad, A.D. Al-Qurashi, S.A. Mohamed, Sci. Hortic. (Amsterdam). 129, 688 (2011)CrossRefGoogle Scholar
  15. 15.
    R.M. Myhara, A. Al-Alawi, J. Karkalas, M.S. Taylor, J. Sci. Food Agric. 80, 2181 (2000)CrossRefGoogle Scholar
  16. 16.
    S.M.H. Mortazavi, F. Azizollahi, N. Moallemi, Int. J. Hortic. Sci. Technol. 2, 161 (2015)Google Scholar
  17. 17.
    A. Golshan Tafti, M.H. Fooladi, J. Biol. Sci. 5, 319 (2005)CrossRefGoogle Scholar
  18. 18.
    F. Shahdadi, H.O. Mirzaei, A. Daraei Garmakhany, J. Food Sci. Technol. 52, 1814 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    E.A. Amira, G. Flamini, S.E. Behija, I. Manel, Z. Nesrine, F. Ali, H. Mohamed, H.A. Noureddine, A. Lotfi, Food Chem. 127, 1744 (2011)CrossRefGoogle Scholar
  20. 20.
    H.K. Lichtenthaler, Methods Enzymol. 148, 350 (1987)CrossRefGoogle Scholar
  21. 21.
    G.J. Wagner, Plant Physiol. 64, 88 (1979)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    R. Tarrahi, F. Rezanejad, Turk. J. Bot. 37, 1145 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Al-Farsi, C. Alasalvar, A. Morris, M. Baron, F. Shahidi, J. Agric. Food Chem. 53, 7592 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    C.-C. Chang, M.-H. Yang, H.-M. Wen, J. Food Drug Anal. 10, 178 (2002)Google Scholar
  25. 25.
    H.P.S. Makkar, M. Blummel, N.K. Borowy, K. Becker, J. Sci. Food Agric. 161 (1993)Google Scholar
  26. 26.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    U. Justesen, P. Knuthsen, T. Leth, J. Chromatogr. A 799, 101 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    S.H. Mirdehghan, M. Rahemi, Sci. Hortic. (Amsterdam). 111, 120 (2007)CrossRefGoogle Scholar
  29. 29.
    W.N. Sawaya, H.A. Khatchadourian, J.K. Khlil, W.M. Safi, A. Al-shalhat, J. Food Sci. 47, 1489 (1982)CrossRefGoogle Scholar
  30. 30.
    W. Sawaya, J. Khalil, W. Safi, A. Al-Shalhat, Can. Inst. Food Sci. 16, 87 (1983)CrossRefGoogle Scholar
  31. 31.
    D.A. Moreno, B. Muries, E. Bastías, M. Carvajal, D.A. Moreno, B. Muries, Agron. Sustain. Dev. 30, 295 (2010)CrossRefGoogle Scholar
  32. 32.
    R. Rahmatollah, R. Mahbobeh, Pharmacognosy Res. 2, 267 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    N. Çağlarırmak, A.Z. Hepçimen, Gida 38, 327 (2013)Google Scholar
  34. 34.
    M.S. Rahman, S.A. Al-Farsi, J. Food Eng. 66, 505 (2005)CrossRefGoogle Scholar
  35. 35.
    N.K. Subramanian, P.J. White, M.R. Broadley, G. Ramsay, Ann. Bot. 107, 681 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    A.L.A. Bernardo, S. Martinez, M. Alvarez, A. Fernandez, J. Food Qual. 31, 701 (2008)CrossRefGoogle Scholar
  37. 37.
    J. Yang, T. Punshon, M. Lou Guerinot, K.D. Hirschi, Nutrients 4, 1120 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    H.R. De Moraes Barros, T.A.P. De Castro Ferreira, M.I. Genovese, Food Chem. 134, 1892 (2012)CrossRefGoogle Scholar
  39. 39.
    Institute of Medicine, DRI Dietary Reference Intakes Calcium Vitamin D (2011)Google Scholar
  40. 40.
    S.F. Sulaiman, N.A.M. Yusoff, I.M. Eldeen, E.M. Seow, A.A.B. Sajak, A.A.B. Supriatno, K.L. Ooi, J. Food Compos. Anal. 24, 1 (2011)CrossRefGoogle Scholar
  41. 41.
    B.M. Waters, M.A. Grusak, New Phytol. 177, 389 (2008)PubMedPubMedCentralGoogle Scholar
  42. 42.
    Institute of Medicine (U.S.), Panel on Micronutrients. DRI : Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc : A Report of the Panel on Micronutrients and the Standing Committee on the Scientific (National Academy Press, Washington, 2001)Google Scholar
  43. 43.
    H. Boudries, P. Kefalas, D. Hornero-Méndez, Food Chem. 101, 1372 (2007)CrossRefGoogle Scholar
  44. 44.
    S. S. M. Al-Qarni, MSc Thesis Sci. Biochem. 147 (2005)Google Scholar
  45. 45.
    Z. Ashraf, Z. Hamidi-esfahani, Food Rev. Int. 37 (2011)Google Scholar
  46. 46.
    T. Belwal, A. Pandey, I.D. Bhatt, R.S. Rawal, Z. Luo, Sci. Rep. 9, 1 (2019)CrossRefGoogle Scholar
  47. 47.
    O.A. Fawole, U.L. Opara, Sci. Hortic. (Amsterdam). 150, 37 (2013)CrossRefGoogle Scholar
  48. 48.
    Z. Benmeddour, E. Mehinagic, D. Le Meurlay, H. Louaileche, J. Funct. Foods 5, 346 (2013)CrossRefGoogle Scholar
  49. 49.
    J.M. Landete, Crit. Rev. Food Sci. Nutr. 53, 706 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    L. Judith, Phytochemistry 2 (1963)Google Scholar
  51. 51.
    N.M.S. Eid, B. Al-Awadi, D. Vauzour, M.J. Oruna-Concha, J.P.E. Spencer, J. Agric. Food Chem. 61, 2453 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    F. Biglari, A.F.M. AlKarkhi, A.M. Easa, Food Chem. 107, 1636 (2008)CrossRefGoogle Scholar
  53. 53.
    M. Monteiro, J. Food. Nutr. Popul. Heal. 1, 1 (2017)Google Scholar
  54. 54.
    U.N. Wanasundara, F. Shahidi, Food Chem. 63, 335 (1998)CrossRefGoogle Scholar
  55. 55.
    A.J. Young, G.L. Lowe, Antioxidants 7, 10 (2018)CrossRefGoogle Scholar
  56. 56.
    E.C. Rosas, L.B. Correa, M. das Graças Henriques, Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (Academic Press, 2019), pp. 489–505Google Scholar
  57. 57.
    A.S.V. Neveu, J. Perez-Jiménez, Database (phenol-explorer.eu) (2010)Google Scholar
  58. 58.
    N. Nićiforović, H. Abramovič, Compr. Rev. Food Sci. Food Saf. 13, 34 (2014)CrossRefGoogle Scholar
  59. 59.
    H.R. El-Seedi, A.M.A. El-Said, S.A.M. Khalifa, U. Göransson, L. Bohlin, A.K. Borg-Karlson, R. Verpoorte, J. Agric. Food Chem. 60, 10877 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    I.M. Abu-Reidah, Á. Gil-Izquierdo, S. Medina, F. Ferreres, Food Res. Int. 100, 494 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    N. Kumar, V. Pruthi, Biotechnol. Reports 4, 86 (2014)CrossRefGoogle Scholar
  62. 62.
    R. Rodrigo, Int. J. Food Nutr. Sci. 3, 1 (2016)Google Scholar
  63. 63.
    N. Liang, D.D. Kitts, Nutrients 8, 1 (2015)CrossRefGoogle Scholar
  64. 64.
    A.K. Sinha, U.K. Sharma, N. Sharma, Int. J. Food Sci. Nutr. 59, 299 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    N.J. Gallage, B.L. Møller, Mol. Plant 8, 40 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    P.V. Gadkari, M. Balaraman, Food Bioprod. Process. 93, 122 (2015)CrossRefGoogle Scholar
  67. 67.
    T.R. Dias, M.G. Alves, B.M. Silva, P.F. Oliveira, Encycl. Reprod. 458 (2018)Google Scholar
  68. 68.
    Y. Shan, Y. Shan, Comprehensive Utilization of Citrus By-Products (Academic Press, 2016), pp. 1–13Google Scholar
  69. 69.
    A. Garg, S. Garg, L.J.D. Zaneveld, A.K. Singla, Phyther. Res. 15, 655 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of BiologyShahid Bahonar University of KermanKermanIran
  2. 2.Department of HorticultureShahid Bahonar University of KermanKermanIran

Personalised recommendations