Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Optimization of extraction conditions for polycyclic aromatic hydrocarbons determination in smoked rice using the high performance liquid chromatography-fluorescence detection

  • 12 Accesses


Optimization of ultrasound-assisted extraction technique was performed in order to measure the concentration of polycyclic aromatic hydrocarbons in smoked rice by the high-performance liquid chromatography with fluorescence detection (HPLC/FLD) device using the response surface methodology (RSM). The experimental work was designed using the central composite design (CCD) in order to investigate the effect of the type and volume of extraction solvent, type of clean-up cartridge, the type, and volume of clean-up solvent on the response (i.e., BaP recovery percentage). The data obtained from 72 experiment runs were analyzed by analysis of variance (ANOVA) statistics. The results showed that the volume of extraction solvent, type of clean-up cartridge, and type and volume of clean-up solvent are significant in the extracted model. Desirability function was used to optimize the separation process. The optimal conditions were 24 ml acetonitrile extraction solvent, cartridge C18, and 0.856 ml mixture of dichloromethane/hexane solvent (50/50) for the clean-up. The BaP index was measured in smoked rice samples of Hashemi and local Domsiah using an optimized selective method. The contamination of the samples ranged from 0.1 to 1.1 μg−1 BaP. Contamination in all samples except two ones was below the maximum permitted level of the EU (i.e., 1 μg l−1).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2























The Scientific Panel of European Food Safety Authority


US Environmental Protection Agency


Commission Regulation






High-performance liquid chromatography with a spectrofluorometric detector


Indeno [1,2,3-cd]pyrene


Limit of detection


Limit of quantitation






Polycyclic aromatic hydrocarbons




Response surface methodology


Solid-phase extraction


Ultrasound-assisted extraction


  1. 1.

    M.L. Lee, M.V. Novotny, K.D. Bartle, Analytical Chemistry of Polycyclic Aromatic Compounds (Academic Press, New York, 1996)

  2. 2.

    B. Maliszewska-Kordybach, Pol. J. Environ. Stud. 8, 131 (1999)

  3. 3.

    C. Wang, X. Wang, P. Gong, T. Yao, Environ. Pollut. 184, 138 (2014)

  4. 4.

    V.N. Maistrenko, R.Z. Khamitov, G.K. Budnikov, Ecological and analytical monitoring of super toxicants (Khimiya, Moscow, 1996). [in Russian]

  5. 5.

    P.J. Lioy, J.M. Waldman, A. Greenberg, R. Harkov, C. Pietarinen, Arch. Environ. Health 43, 304 (1988)

  6. 6.

    J.P. Bulter, G.B. Post, P.J. Lioy, J.M. Waldman, A. Greenberg, Air Waste Manage. Assoc. 43, 970 (1993)

  7. 7.

    L.Y. Pimentel, E.M. Carballo, J. Regueiro, J.S. Gándara, Food Chem. 139, 1036 (2013)

  8. 8.

    Z. Vyskocil, V. Fiala, L. Chenier, E. Krajak, J. Ettlerova, C. Bukac, S. Viau, Emminger. Environ. Toxicol. Pharmacol. 8, 111 (2000)

  9. 9.

    E.M. Basova, V.M. Ivanov, Mosc. Univ. Chem. Bull. 66, 133 (2011)

  10. 10.

    US Environmental Protection Agency, Office of Air Quality Planning and Standards (Research Triangle Park, NC (US EPA), 1994)

  11. 11.

    European Commission EC, as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs (2011)

  12. 12.

    R.T.S. Bernd, Appl. Geochem. 17, 129 (2002)

  13. 13.

    C. Gertz, H. Kogelheide, Fat. Sci. Technol. 199, 175 (1994)

  14. 14.

    R. Rodríguez-Acuña, M.C. Pérez-Camino, A. Cert, W. Moreda, J. Agric. Food Chem. 56, 10428 (2008)

  15. 15.

    M. Le´on-Camacho, I. Viera-Alcalde, M.V. Ruiz-M´endez, Eur. J. Lipid Sci. Technol. 105, 9 (2003)

  16. 16.

    Z.E. Stołyhwo, Sikorski. Food Chem. 91, 303 (2005)

  17. 17.

    M. Ciecierska, M. Obiedzinski, Acta Sci. Pol. 6, 17 (2007)

  18. 18.

    H. Alomirah, S. Al-Zenki, S. Al-Hooti, S. Zaghloul, W. Sawaya, N. Ahmed, K. Kannan, Food Control 22, 2028 (2011)

  19. 19.

    USDA Food Composition Databases (2017)

  20. 20.

    N. Itoh, Y. Aoyagi, T.J. Yarita, Chromatogr. A. 1131, 285 (2006)

  21. 21.

    G. Purcaro, M. Moret, L.S. Conte, Talanta 105, 292 (2013)

  22. 22.

    M.J. Bogusz, S.A. El Hajj, Z. Ehaideb, H. Hassan, M. Al-Tufail, J. Chromatogr. A 1026, 1 (2004)

  23. 23.

    S. Moret, G. Purcaro, L.S. Conte, Sci. Total. Environ. 386, 1 (2007)

  24. 24.

    S. Moret, B. Piani, R. Bortolomeazzi, L.S. Conte, Z. Lebensm Unters Forschung A 205, 116 (1997)

  25. 25.

    S. Tao, Y.H. Cui, F.L. Xu, B.G. Li, J. Cao, W.X. Liu, G. Schmitt, X.J. Wang, W.R. Shen, B.P. Qing, R. Sun, Sci. Total Environ. 320, 11 (2004)

  26. 26.

    S. Tao, X.C. Jiao, S.H. Chen, W.X. Liu, R.M. Coveney, L.Z. Zhu, Y.M. Luo, Environ. Pollut. 140, 406 (2006)

  27. 27.

    X. Jiao, F. Xu, R. Dawson, S. Chen, S. Tao, Environ. Pollut. 148, 230 (2007)

  28. 28.

    C. Ding, H. Ni, H. Zeng, Environ. Pollut. 168, 80 (2012)

  29. 29.

    P. Matin, M. Biparva, Gheshlaghi. J. Chromatogr. A 11, 48 (2014)

  30. 30.

    S. Escarrone, E. Caldas, V. Furlong, C. Meneghetti, J. Fagundes, E. Arias, Primel. Food Chem. 146, 597 (2014)

  31. 31.

    N.P. Petridis, V.A. Sakkas, A. Triantafyllos, T.A. Albanis, J. Chromatogr. A 1355, 46–52 (2014)

  32. 32.

    M.J. Ramalhosa, P. Paíga, S. Morais, A.M. Sousa, M.P. Gonçalves, C. Delerue-Matos, M.B.P.P. Oliveira, Food Chem. 135, 234 (2012)

  33. 33.

    K.L. Gonzalez, G. Foster, Hanrahan. J. Chromatogr. A 1167, 135 (2007)

  34. 34.

    P. Andrade-Eiroa, P. Diévart, Dagaut. Talanta 81, 265 (2010)

  35. 35.

    Y. Aydar, Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. (IntechOpen, the world’s leading publisher of Open Access books), https://doi.org/10.5772/intechopen.73690

  36. 36.

    D.C. Montgomery, Design and Analysis of Experiments: Response Surface Method and Designs (Wiley, New Jersey, 2005)

  37. 37.

    F.-E. Koç, Response surface methodology and food processing applications. Gıda 7, 1–8 (2009)

  38. 38.

    ISO Method, International standard methods for animal and vegetable fats and oils. Determination of polycyclic aromatic hydrocarbons (2016), ISO 15753

  39. 39.

    Y. Vander, C. Perrin, D.L. Massart, Optimization strategies for HPLC and CZE, in handbook of analytical separations, in Separation Methods in Drug Synthesis and Purification, vol. 1, ed. by K. Valko (Elsevier, Amsterdam, 2000), pp. 163–164

  40. 40.

    L. Massart, B.G.M. Vandeginste, L.M.S. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics: Part A (Elsevier, Amsterdam, 1997), p. 867

  41. 41.

    M. Mohseni-Bandpei, M. Majlesi, S. Rafiee, P. Nojava, P. Nowrouz, H. Zolfagharpour, Chemosphere 227, 277 (2019)

  42. 42.

    R.L. Mason, R.F. Gunst, J.L. Hess, Statistical design and analysis of experiments (Wiley, New York, 2003)

  43. 43.

    A. Melo, A. Aguiar, C. Mansilha, O. Pinho, I.M. Ferreira, Food Chem. 130, 1090 (2012)

  44. 44.

    V. Mohammadi, P. Ghasemzadeh-Mohammadi, R. Haratian, M. Khaksar, Chaichi. Food Chem. 141, 2459 (2013)

  45. 45.

    F. Ates, N. Erginel, Fuel Process Technol. 142, 279 (2016)

  46. 46.

    L. Ferey, N. Delauna, D.N. Rutledge, A. Huertas, Y. Raou, P. Gareil, J. Vial, J. Chromatogr. A 1302, 181 (2013)

  47. 47.

    M. Kamankesh, A. Mohammad, H. Hosseini, Z.M. Tehrani, Meat Sci. 103, 61 (2015)

  48. 48.

    European Commission Regulation (EC)333/2007. Off. J. Eur. Comm.L88 (2007)

  49. 49.

    T.T. Tran-Lam, Y.H. Dao, L.K.T. Nguyen, H.K. Ma, H.N. Tran, G.T. Le, Foods 7, 201 (2018)

  50. 50.

    J.F. Huertas-Pérez, L.R. Bordajandi, B. Sejerøe-Olsen, H. Emteborg, A. Baù, H. Schimmel, M. Dabrio, Anal. Bioanal. Chem. 407, 3069 (2015)

  51. 51.

    M. Yoo, S. Lee, S. Kim, S. Kim, H. Seo, D. Shin, Int. J. Food Sci. Technol. 49, 1480 (2014)

  52. 52.

    B. Kiełbasa, Buszewski. Pol. J. Environ. Stud. 24, 2021 (2015)

  53. 53.

    T. Khezeli, A. Daneshfar, R. Sahraei, J. Chromatogr. A 1425, 25 (2015)

Download references


The authors are gratified to Science and Research Branch, Islamic Azad University, Iranian Research Organization for Science and Technology (IROST).

Author information

Correspondence to Seyyed Mahdi Seyedain Ardabili or Zahra Piravivanak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies on human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fazeli, F., Ardabili, S.M.S., Piravivanak, Z. et al. Optimization of extraction conditions for polycyclic aromatic hydrocarbons determination in smoked rice using the high performance liquid chromatography-fluorescence detection. Food Measure (2020). https://doi.org/10.1007/s11694-020-00372-w

Download citation


  • Polycyclic aromatic hydrocarbons
  • Smoked rice
  • Solid phase extraction
  • Experimental design
  • Response surface methodology
  • High-performance liquid chromatography with fluorescence detection (HPLC/FLD)