Advertisement

Semi-targeted metabolomic analysis provides the basis for enhanced antioxidant capacities in pigmented rice grains

  • Jhansi Narmada Reddy Kotamreddy
  • Chitra Hansda
  • Adinpunya MitraEmail author
Original Paper
  • 5 Downloads

Abstract

In the present study, polar metabolites including primary metabolites were analysed from red, black and white rice grains using gas chromatography mass spectrometry (GC–MS). Quantitative as well as qualitative differences in metabolite profiles of red, black and white rice were observed. Principal component analysis (PCA) of the data obtained from semi-targeted metabolite profiling showed a clear separation of grains with different pericarp colour. In the PCA scores plot, PC1 separated pigmented rice and non-pigmented rice. While, PC2 separated red rice and black rice. Biplot generated from metabolite profile of the rice grains indicated that vanillic acid, protocatechuic acid and glycerol-3-phosphate differentiate black rice from red and white rice. Erythritol and ribonic acid are present only in red rice causing its separation from black and white rice. Additionally, total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and the reducing potential of extracts in terms of ferric reducing ability of plasma (FRAP) were carried out. DPPH and ABTS radical scavenging activities of pigmented rice are higher than that of white rice, possibly due to the presence of high TPC in their grains. However, reducing power in terms of FRAP is highest in black rice and is comparable in red and white rice. Furthermore, correlation analysis of antioxidant activities with the metabolites was done to identify the possible primary metabolites contributing to antioxidant capacities of pigmented and non-pigmented rice. This study provides a premise for integration of pigmented rice in our daily diet owing to the potential health benefits of the compositional metabolites.

Keywords

Pigmented rice Antioxidant activities Gas chromatography mass spectrometry (GC–MS) Metabolite profiling Principal component analysis (PCA) 

Notes

Acknowledgements

This work was a part of a mega project on Sustainable Food Security (File No: 4–25/2013/TS-I) funded by Ministry of Human Resource Development, Government of India. JNRK was a recipient of a doctoral fellowship from the institute.

Supplementary material

11694_2019_367_MOESM1_ESM.doc (176 kb)
Supplementary material 1 (DOC 175 kb)

References

  1. 1.
    G.F. Deng, X.R. Xu, Y.J. Guo, E.Q. Xia, S. Li, S. Wu, F. Chen, W.H. Ling, H.B. Li, J. Funct. Foods 4, 906 (2012)CrossRefGoogle Scholar
  2. 2.
    G.F. Deng, X.R. Xu, Y. Zhang, D. Li, R.Y. Gan, H.B. Li, Crit. Rev. Food Sci. Nutr. 53, 296 (2013)CrossRefGoogle Scholar
  3. 3.
    G. Pereira-Caro, G. Cros, T. Yokota, A. Crozier, J. Agric. Food Chem. 61, 7976 (2013)CrossRefGoogle Scholar
  4. 4.
    I.L. Massaretto, M.F.M Alves, N.V.M de Mira, A.K. Carmona, U.M.L. Marquez. J. Cereal Sci. 54, 236 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Shao, J. Bao, Food Chem. 180, 86 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Jang, Z. Xu, J. Agric. Food. Chem. 57, 858 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Oki, M. Masuda, M. Kobayashi, Y. Nishiba, S. Furuta, I. Suda, J. Agric. Food. Chem. 50, 7524 (2002)CrossRefGoogle Scholar
  8. 8.
    B. Min, A.M. McClung, M.H. Chen, J. Food Sci. 76, 117 (2011)CrossRefGoogle Scholar
  9. 9.
    W.H. Ling, Q.X. Cheng, J. Ma, T. Wang, J. Nutr. 131, 1421 (2001)CrossRefGoogle Scholar
  10. 10.
    R. Valarmathi, M. Raveendran, S. Robin, N. Senthil, J. Plant Biochem. Biotechnol. (2014).  https://doi.org/10.1007/s13562-014-0274-6 CrossRefGoogle Scholar
  11. 11.
    Q. Wang, P. Han, M. Zhang, M. Xia, H. Zhu, J. Ma, M. Hou, Z. Tang, W. Ling, Asia Pac. J. Clin. Nutr. 16, 295 (2007)PubMedGoogle Scholar
  12. 12.
    J. Shipp, E.S. Abdel-Aal, Open Food Sci. J. 4, 7 (2010)CrossRefGoogle Scholar
  13. 13.
    F.J. Francis, Cereal Food. World 45, 208 (2000)Google Scholar
  14. 14.
    C. Chotimarkorn, S. Benjakul, N. Silalai, Food Res. Int. 41, 616 (2008)CrossRefGoogle Scholar
  15. 15.
    D.K. Lim, C. Mo, J.H. Lee, N.P. Long, Z. Dong, J. Li, J. Lim, S.W. Kwon, J. Food Drug Anal. 26, 769 (2018)CrossRefGoogle Scholar
  16. 16.
    S.K. Biswas, D.E. Kim, Y.S. Keum, R.K. Saini, J. Food Meas. Charact. 12, 2484 (2018)CrossRefGoogle Scholar
  17. 17.
    T. Frank, B. Reichardt, Q. Shu, K.H. Engel, J. Cereal Sci. 55, 112 (2012)CrossRefGoogle Scholar
  18. 18.
    J.K. Kim, S.Y. Park, S.H. Lim, Y. Yeo, H.S. Cho, S.H. Ha, J. Cereal Sci. 57, 14 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Taylor, R.D. King, T. Altmann, O. Fiehn, Bioinformatics 18, 241 (2002)CrossRefGoogle Scholar
  20. 20.
    Y. Shao, Z. Hu, Y. Yu, R. Mou, Z. Zhu, Food Chem. 239, 733 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Pramai, N.A.A. Hamid, A. Mediani, M. Maulidiani, F. Abasb, S. Jiamyangyuen, J. Food Drug Anal. 26, 47 (2018)CrossRefGoogle Scholar
  22. 22.
    G.R. Kim, E.S. Jung, S. Lee, S.H. Lim, S.H. Ha, C.H. Lee, Molecules 219, 15673 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Min, L. Gu, A.M. McClung, C.J. Bergman, M.H. Chen, Food Chem. 133, 715 (2012)CrossRefGoogle Scholar
  24. 24.
    M.Y. Kang, C.W. Rico, H.J. Bae, S.C. Lee, Cereal Chem. 90, 497 (2013)CrossRefGoogle Scholar
  25. 25.
    U.R. Moon, S.K. Sen, A. Mitra, J. Herbs Spices Med. Plants. 20, 115 (2014)CrossRefGoogle Scholar
  26. 26.
    B. De, G. Nag, C. R. Biol. 337, 283 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Xia, I. Sinelnikov, B. Han, D.S. Wishart, Nucleic Acids Res. 43, 251 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Sompong, S. Siebenhandl-Ehn, G. Linsberger-Martin, E. Berghofer, Food Chem. 124, 132 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Shen, L. Jin, P. Xiao, Y. Lu, J. Bao, J. Cereal Sci. 49, 106 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.P. Huang, H.M. Lai, J. Food Drug Anal. 24, 564 (2016)CrossRefGoogle Scholar
  31. 31.
    W. Pongsuwan, E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, A. Kobayashi, J. Agric. Food. Chem. 55, 231 (2007)CrossRefGoogle Scholar
  32. 32.
    P. Goufo, H, Trindade. Food Sci Nutr. 2, 75 (2014)CrossRefGoogle Scholar
  33. 33.
    C.L. Dittgen, J.F. Hoffmann, F.C. Chaves, C.V. Rombaldi, J.M.C. Filho, N.L. Vanier, Food Chem. 288, 297 (2019)CrossRefGoogle Scholar
  34. 34.
    L. Tarpley, A.L. Duran, T.H. Kebrom, L.W. Sumner, BMC Plant Biol. 5, 8 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Goto, Y. Murakami, H. Yamanaka, Koshihikari and Minenishiki. J. Jpn. Soc. Food Sci. 43, 821 (1996)CrossRefGoogle Scholar
  36. 36.
    H. Du, Y. Huo, H. Liu, G.M. Kamal, J. Yang, Y. Zeng, S. Zhao, Y. Liu, CYTA J. Food 17, 128 (2019)CrossRefGoogle Scholar
  37. 37.
    D. Camacho, A. de la Fuente, P. Mendes, Metabolomics 1, 53 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Natural Product Biotechnology Group, Agricultural and Food Engineering DepartmentIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations