Polyphenols from olive stones: extraction with a pilot scale pressurized water extractor, microencapsulation by spray-dryer and storage stability evaluation

  • Emine Nakilcioğlu-TaşEmail author
  • Semih Ötleş
Original Paper


This study aimed to obtain an extract rich in polyphenols from olive stones using a pilot scale pressurized water extractor, and microencapsulate this extract using a spray dryer. The optimization study focused on the evaluation of the stabilization of the polyphenols and antioxidant effects of the microcapsules obtained. The polyphenol extract of the olive stones obtained under optimum extraction conditions (50 °C, 50 bar, 90 min) was microencapsulated by using 1% chitosan solution as the microencapsulation agent. The total polyphenol contents (TPCs), total flavonoid contents (TFCs), individual polyphenol contents and antioxidant capacities (DPPH and FRAP) of the polyphenol extract and the microcapsules, which were obtained using 200 °C as the optimum air inlet temperature in the spray dryer, were determined. For the evaluation of stability, these microcapsules were stored at three different temperatures, namely − 20 °C, 4 °C and 25 °C, for 180 days. Changes in their TPCs, surface polyphenol contents (SPCs), microencapsulation efficiencies, TFCs and antioxidant capacities were determined every 30 days and their individual polyphenol contents were characterized at both the beginning and the end of the storage period. The encapsulation efficiency of the microcapsules obtained under optimum conditions was 76.89%. At the end of the storage period, the highest degradation of the related compounds was found at − 20 °C. Moreover, it was found that the polyphenols (24.17% for TPC, 53.73% for SPC, and 39.31% for TFC) and antioxidant capacities (15.63% for antiradical effect, and 20.39% for FRAP) of the microcapsules were best preserved in storage at 4 °C. It was thought that aforementioned condition was suitable for the storage of microcapsules which could be evaluated as a new natural food additive or pharmaceutical ingredient.


Microencapsulation Olive stone Polyphenols Pressurized water extraction at pilot scale Storage stability 



This work has been financially supported by the Ege University Scientific Research Foundation under the Project Number of 14-MUH-003. The authors would like to thank Prof. Dr. Yaşar Hışıl for his technical assistance.


  1. 1.
    B. Aliakbarian et al., Lwt-Food. Sci. Technol. 93, 220–228 (2018)Google Scholar
  2. 2.
    E. Roselló-Soto et al., Trends Food Sci. Technol. 45(2), 296–310 (2015)CrossRefGoogle Scholar
  3. 3.
    G. Rodríguez, A. Lama, R. Rodríguez, A. Jiménez, R. Guillén, J. Fernández-Bolaños, Bioresour. Technol. 99(13), 5261–5269 (2008)PubMedCrossRefGoogle Scholar
  4. 4.
    C. Yamashita, M.M.S. Chung, C. dos Santos, C.R.M. Mayer, I.C.F. Moraes, I.G. Branco, LWT Food Sci. Technol. 84, 256–262 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Rodrigues, F.B. Pimentel, M.B.P.P. Oliveira, Ind. Crops Prod. 70, 116–124 (2015)CrossRefGoogle Scholar
  6. 6.
    F.J. Gomez-de la Cruz, P.J. Casanova-Pelaez, J.M. Palomar-Carnicero, F. Cruz-Peragon, Energy 75, 146–152 (2014)CrossRefGoogle Scholar
  7. 7.
    E. Nakilcioğlu-Taş, S. Ötleş, J. Food Meas. Charact. 13(2), 1497–1507 (2019)CrossRefGoogle Scholar
  8. 8.
    S.S. Santos, L.M. Rodrigues, S.C. Costa, G.S. Madrona, Food Packag. Shelf Life 20, 100177 (2019)CrossRefGoogle Scholar
  9. 9.
    B.-C. Liau, V.K. Ponnusamy, M.-R. Lee, T.-T. Jong, J.-H. Chen, Ind. Crops Prod. 95, 296–304 (2017)CrossRefGoogle Scholar
  10. 10.
    Q.D. Do et al., J. Food Drug Anal. 22(3), 296–302 (2014)PubMedCrossRefGoogle Scholar
  11. 11.
    M. Çam, M. Dinç Işıklı, E. Yüksel, H. Alaşalvar, B. Başyiğit, J. Food Meas. Charact. 12(3), 1927–1934 (2018)CrossRefGoogle Scholar
  12. 12.
    H. Kamali, T. AhmadzadehSani, A. Mohammadi, P. Alesheikh, E. Khodaverdi, F. Hadizadeh, J. Supercrit. Fluids 133, 535–541 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Pronyk, G. Mazza, J. Food Eng. 95(2), 215–226 (2009)CrossRefGoogle Scholar
  14. 14.
    S.B. Hawthorne, A.J.M. Lagadec, D. Kalderis, A.V. Lilke, D.J. Miller, Environ. Sci. Technol. 34(15), 3224–3228 (2000)CrossRefGoogle Scholar
  15. 15.
    P.O. Kilpeläinen et al., Green Chem. 16(6), 3186–3194 (2014)CrossRefGoogle Scholar
  16. 16.
    P.H.R. do Amaral, P.L. Andrade, L.C. de Conto, in Microencapsulation—Processes, Technologies and Industrial Applications, ed. by F. Salaün (IntechOpen, London, 2019), pp. 1–18Google Scholar
  17. 17.
    L. Tavares, C.P. Zapata Noreña, Food Hydrocoll. 89, 360–369 (2019)CrossRefGoogle Scholar
  18. 18.
    B.R.P. Cabral et al., J. Food Eng. 238, 195–201 (2018)CrossRefGoogle Scholar
  19. 19.
    C.M. Spagnol, A.M. Zaera, V.L.B. Isaac, M.A. Corrêa, H.R.N. Salgado, Saudi Pharm. J. 26(3), 410–415 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    F. Casanova, B.N. Estevinho, L. Santos, Powder Technol. 297, 44–49 (2016)CrossRefGoogle Scholar
  21. 21.
    A.M. Bakowska-Barczak, P.P. Kolodziejczyk, Ind. Crops Prod. 34(2), 1301–1309 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Çam, N.C. İçyer, F. Erdoğan, LWT Food Sci. Technol. 55(1), 117–123 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Ersus, U. Yurdagel, J. Food Eng. 80(3), 805–812 (2007)CrossRefGoogle Scholar
  24. 24.
    S.L. Kosaraju, L. D’ath, A. Lawrence, Carbohydr. Polym. 64(2), 163–167 (2006)CrossRefGoogle Scholar
  25. 25.
    S.L. Young, X. Sarda, M. Rosenberg, J. Dairy Sci. 76, 2868–2877 (1993)CrossRefGoogle Scholar
  26. 26.
    Z. Fang, B. Bhandari, Food Chem. 129(3), 1139–1147 (2011)PubMedCrossRefGoogle Scholar
  27. 27.
    L. Zhang, S.L. Kosaraju, Eur. Polym. J. 43(7), 2956–2966 (2007)CrossRefGoogle Scholar
  28. 28.
    Y.Z. Cai, H. Corke, J. Food Sci. 65(7), 1248–1252 (2000)CrossRefGoogle Scholar
  29. 29.
    C. Saénz, S. Tapia, J. Chávez, P. Robert, Food Chem. 114(2), 616–622 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Luca, B. Cilek, V. Hasirci, S. Sahin, G. Sumnu, Food Bioprocess Technol. 7(1), 204–211 (2014)CrossRefGoogle Scholar
  31. 31.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144–153 (1965)Google Scholar
  32. 32.
    Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, S. Cheng, Food Chem. 96(2), 254–260 (2006)CrossRefGoogle Scholar
  33. 33.
    D. Heimler, P. Vignolini, M.G. Dini, A. Romani, J. Agric. Food Chem. 53(8), 3053–3056 (2005)PubMedCrossRefGoogle Scholar
  34. 34.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, Lebensmittel-Wissens-chaft-und-Technologie 28, 25–30 (1995)CrossRefGoogle Scholar
  35. 35.
    C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, Y. Jiang, Nutr. Res. 23(12), 1719–1726 (2003)CrossRefGoogle Scholar
  36. 36.
    J.Z. Xu, S.Y.V. Yeung, Q. Chang, Y. Huang, Z.-Y. Chen, Br. J. Nutr. 91(6), 873–881 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    M. Çam, Y. Hışıl, Food Chem. 123(3), 878–885 (2010)CrossRefGoogle Scholar
  38. 38.
    H. Koyu, A. Kazan, T.K. Ozturk, O. Yesil-Celiktas, M.Z. Haznedaroglu, J. Supercrit. Fluids 127, 15–22 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Gong, X. Zhang, L. He, Q. Yan, F. Yuan, Y. Gao, J. Food Sci. Technol. 52(3), 1534–1542 (2015)PubMedCrossRefGoogle Scholar
  40. 40.
    K.M. Solval, S. Sundararajan, L. Alfaro, S. Sathivel, LWT Food Sci. Technol. 46(1), 287–293 (2012)CrossRefGoogle Scholar
  41. 41.
    D. Shofinita, T.A.G. Langrish, J. Food Eng. 139, 31–42 (2014)CrossRefGoogle Scholar
  42. 42.
    A.A. Santana, R.A. de Oliveira, L.E. Kurozawa, K.J. Park, Eng. Agríc. 34(5), 980–991 (2014)CrossRefGoogle Scholar
  43. 43.
    E.A. El-Hefian, E.S. Elgannoudi, A. Mainal, A.H. Yahaya, Turk. J. Chem. 34, 47–56 (2010)Google Scholar
  44. 44.
    M. Paini, B. Aliakbarian, A.A. Casazza, A. Lagazzo, R. Botter, P. Perego, LWT Food Sci. Technol. 62(1), 177–186 (2015)CrossRefGoogle Scholar
  45. 45.
    S.L. Kosaraju, D. Labbett, M. Emin, I. Konczak, L. Lundin, Nutr. Diet. 65(Suppl. 3), S48–S52 (2008)CrossRefGoogle Scholar
  46. 46.
    D. Pasrija, P.N. Ezhilarasi, D. Indrani, C. Anandharamakrishnan, LWT Food Sci. Technol. 64(1), 289–296 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Ben Salah, H. Abdelmelek, and M. Abderraba, Med. Chem. (Los. Angeles). 2(5), 1–5 (2012)Google Scholar
  48. 48.
    B. Aliakbarian, M. Paini, A.A. Casazza, P. Perego, Chem. Eng. Trans. 43, 97–102 (2015)Google Scholar
  49. 49.
    R. Santiago-Adame et al., LWT Food Sci. Technol. 64(2), 571–577 (2015)CrossRefGoogle Scholar
  50. 50.
    M. Herrero, T.N. Temirzoda, A. Segura-Carretero, R. Quirantes, M. Plaza, E. Ibañez, J. Chromatogr. A 1218(42), 7511–7520 (2011)PubMedCrossRefGoogle Scholar
  51. 51.
    F. Al-Rimawi, I. Odeh, A. Bisher, J. Abbadi, M. Qabbajeh, J. Food Nutr. Res. 2(12), 925–930 (2014)CrossRefGoogle Scholar
  52. 52.
    E. González et al., Food Chem. 279, 40–48 (2019)PubMedCrossRefGoogle Scholar
  53. 53.
    A. Zungur Bastıoğlu, M. Koç, B. Yalçın, F. Ertekin Kaymak, S. Ötleş, J. Food Meas. Charact. 11, 1210–1226 (2017)CrossRefGoogle Scholar
  54. 54.
    M. Cam, N. Cihat, F. Erdo, LWT Food Sci. Technol. 55, 117–123 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of EngineeringEge UniversityBornova IzmirTurkey

Personalised recommendations