Advertisement

Effects of genotypes and crossbreeding on the quality parameters of dry-cured shoulders from different Iberian genetic pig lines

  • Daniel CaballeroEmail author
  • María Asensio
  • Carlos Fernández
  • Raquel Reina
  • María J. García
  • José L. Noguera
  • Antonio Silva
Original Paper
  • 7 Downloads

Abstract

Iberian pigs are a porcine breed, in which is very important to obtain a genetic line showing a larger prolificacy and performance of valuable parts, without affecting the meat quality. The main objective of this work was to estimate genetic and crossbreeding effects on quality parameters on dry-cured Iberian shoulders from the different genotypes of the Iberian pigs. For that, three Iberian pigs’ varieties (Entrepelado, Retinto and Torbiscal) and their reciprocal crosses were used. Thus, three genetic lines showed the best results: (i) the Retinto genetic line (R×R) showed the results with the highest mean values in MUFA (56.02%) and the lowest in salt content (3.12%), which could have a useful genetic basis for the improvement; (ii) the crossed genetic line between Torbiscal and Entrepelado (T×E) is characterized for a high value of myoglobin (9.05 mg/g) that it is related to some sensory attributes (flavor persistence − 5.82- and juiciness − 6.02-); (iii) the crossed genetic line between Retinto and Entrepelado (R×E) is characterized for a high content of lipids (8.32%), which is related to high scores on some sensory attributes (fat oiliness − 6.64-, juiciness − 6.24- and odour intensity  − 6.86-). Therefore, these three genetic lines of Iberian pig based on terms of quality are adequate to produce meat and meat products from the Iberian pigs, outstanding R×R genetic line of Iberian pig.

Keywords

Retinto Torbiscal Entrepelado Sensory attributes Technological parameters Fatty acids 

Abbreviations

SFA

Saturated fatty acids

MUFA

Mono-unsaturated fatty acids

PUFA

Poly-unsaturated fatty acids

E×E

Entrepelado pig genetic line

R×R

Retinto pig genetic line

T×T

Torbiscal pig genetic line

R×T

Pig genetic line crossed between Retinto and Torbiscal, and, Torbiscal and Retinto

R × E

Pig genetic line crossed between Retinto and Entrepelado, and, Entrepelado and Retinto

T × E

Pig genetic line crossed between Torbiscal and Entrepelado, and, Entrepelado and Torbiscal

AECERIBER

Spanish Association of Iberian Purebred Pig Breeders

FA

Fatty acids

GC-FID

Gas chromatography—flame ionisation detector

aW

Water activity

TBARS

Thiobarbituric acid-reactive substance

TEP

1,1,3,3-Tetraethoxypropane

MDA

Malonaldehyde

FAME

Fatty acid methyl esters

ISO

International Standard Organization

CCA

Canonical correlation analysis

PCA

Principal component analysis

ANOVA

Analysis of variance

L/W Ratio

Ratio between length and width

L/P Ratio

Ratio between length and perimeter

N.F.E.S.

Nitrogen-free extractive substances

Notes

Acknowledgments

This study was partially funded by “Centro para el Desarrollo Tecnológico Industrial” (CDTI: IDI-20100447 and CDTI: IDI-20140447). Daniel Caballero thanks the “Junta de Extremadura” for the postdoctoral grant (PO17017). The authors also wish to acknowledge to Emilio Magallón, Manuel Ramos, Pilar Díaz and Luis Muñoz from INGAFOOD S.A. corporation (Almendralejo, Spain) and Noelia Ibáñez-Escriche from Polytechnic University of Valencia for their direct contribution and support.

Compliance with ethical standards

Conflict of interest

There are not conflict of interest with the authors of this paper.

References

  1. 1.
    J. Ventanas, J.F. Tejeda, M.J. Petrón, El jamón Ibérico: de una imagen de calidad a una imagen definida y contrastada, in Tecnología del jamón Ibérico, ed. by By J. Ventanas (Mundi-Prensa, Madrid, 2001), pp. 15–45Google Scholar
  2. 2.
    M. Egea, M.B. Linares, M.D. Garrido, J. Madrid, F. Hernández, Feeding Iberian x Duroc cross pigs with crude glycerine: effects of diet and gender on carcass and meat quality. Meat Sci. 111, 78–84 (2016)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Silva, R. Reina, J. García-Casco, J. Ventanas, Chemical-instrumental-sensory parameters and chemometrics as tools to discriminate among the quality categories of dry-cured Iberian shoulder. Grasas Aceites 64(2), 201–209 (2013)CrossRefGoogle Scholar
  4. 4.
    G. Gandermer, Dry-cured ham quality as related to lipid quality of raw material and lipid changes during processing: a review. Grasas Aceites 60(3), 297–307 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Morcuende, M. Estévez, J. Ruiz, R. Cava, Oxidative and lipolitic deterioration of different muscle from free-range reared Iberian pigs under refrigerated storage. Meat Sci. 65, 1157–1164 (2003)PubMedCrossRefGoogle Scholar
  6. 6.
    C. Li, L. He, G. Jin, S. Ma, W. Wu, L. Gai, Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage. Meat Sci. 128, 68–76 (2017)PubMedCrossRefGoogle Scholar
  7. 7.
    S. Ventanas, J. Ventanas, J. Tovar, C. García, M. Estévez, Extensive feeding versus oleic acid and tocopherol enriched mixed diets for the production of dry-cured Iberian hams: effect on chemical composition, oxidative status and sensory traits. Meat Sci. 77, 246–256 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    T. Pérez-Palacios, T. Antequera, M.L. Durán, A. Caro, P.G. Rodríguez, J. Ruiz, MRI-based analysis, lipid composition and sensory traits for studying dry-cured Iberian hams from pigs fed with different diets. Food Res. Int. 43, 248–254 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Ruiz, C. García, E. Muriel, A.I. Andrés, J. Ventanas, Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Sci. 61, 347–354 (2002)PubMedCrossRefGoogle Scholar
  10. 10.
    J. Zhang, Y. Ye, Y. Sun, D. Pan, C. Ou, Y. Dang, Y. Wang, J. Cao, D. Wang, 1H NMR and multivariate data analysis of the differences of metabolites in five types of dry-cured hams. Food Res. Int. 113, 140–148 (2018)PubMedCrossRefGoogle Scholar
  11. 11.
    J. Zhang, Y. Yi, D. Pan, G. Zhou, Y. Wang, Y. Dang, J. He, G. Li, J. Cao, 1H NMR-based metabolomics profiling and taste of boneless dry-cured hams during processing. Food Res. Int. 122, 114–122 (2019)PubMedCrossRefGoogle Scholar
  12. 12.
    E. Muriel, J. Ruiz, J. Ventanas, M.J. Petrón, T. Antequera, Meat quality characteristics in different lines of Iberian pigs. Meat Sci. 67, 299–307 (2004)PubMedCrossRefGoogle Scholar
  13. 13.
    J.F. Tejeda, G. Gandermer, T. Antequera, M. Viau, C. Garcia, Lipid traits of muscles as related to genotype and fattening diet in Iberian pigs: total intramuscular lipids and triacyglycerols. Meat Sci. 60, 357–363 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    T. Pérez-Palacios, T. Antequera, R. Molano, P.G. Rodríguez, R. Palacios, Sensory traits prediction in dry-cured hams from fresh products via MRI and lipid composition. J. Food Eng. 101, 152–157 (2010)CrossRefGoogle Scholar
  15. 15.
    D. Caballero, M. Asensio, C. Fernández, N. Martín, A. Silva, Classifying different Iberian pig genetic lines by applying chemical-instrumental parameters of dry-cured Iberian shoulders. J. Food Sci. Technol. 55, 4589–4599 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    D. Caballero, M. Asensio, C. Fernández, R. Reina, J. García-Casco, N. Martín, A. Silva, Chemical-instrumental-sensory traits and data mining for classifying dry-cured Iberian shoulders from pigs with different diets. J. Food Meas. Charact. (2019).  https://doi.org/10.1007/s11694-019-00214-4 CrossRefGoogle Scholar
  17. 17.
    J. Fernández, I. Clemente, C. Amador, A. Membrillo, P. Azor, A. Molina, Use of different sources of information for the recovery and genetic management of endangered populations: example with the extreme case of Iberian pig Dorado strain. Livest. Sci. 149, 282–289 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Estevez, D. Morcuende, R. Cava, Physico-chemical characteristics of M. Longissimus Dorsi from these lines of free range reared Iberian pigs slaughtered at 90 Kg. Live-weight and comercial pigs: a comparative study. Meat Sci. 65, 1139–1146 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    L. Silio, Iberian pig breeding program, in Developing breeding strategies for lower input: animal production, ed. by S. Galal, J. Boyazoglou, K. Hammond (ICAR, Rome, 2000), pp. 511–519Google Scholar
  20. 20.
    C.J. López-Bote, Sustained utilization of the Iberian pig breed. Meat Sci. 49, 17–27 (1998)CrossRefGoogle Scholar
  21. 21.
    C. Minguez, J.P. Sánchez, P. Hernández, M. Ragab, A.G. El Nagar, M. Baselga, Genetic analysis of meat quality traits in maternal lines of rabbit and their diallel cross. Meat Sci. 131, 1–8 (2017)PubMedCrossRefGoogle Scholar
  22. 22.
    S.M. Stewart, P. McGilchrist, G.E. Gardner, D.W. Pethick, Lamb loin tenderness is not associated with plasma indicators of pre-slaughter stress. Meat Sci. 137, 147–152 (2018)PubMedCrossRefGoogle Scholar
  23. 23.
    N. Ibáñez-Escriche, E. Magallón, E. González, J.F. Tejeda, J.L. Noguera, Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J. Anim. Sci. 94, 28–37 (2016)PubMedCrossRefGoogle Scholar
  24. 24.
    A. Fernández, M.C. Rodríguez, J. Rodrigáñez, L. Silió, M. Toro, Use of bayesian analysis of growth function to estimate crossbreeding parameters in Iberian pigs. Livest. Prod. Sci. 73, 213–223 (2002)CrossRefGoogle Scholar
  25. 25.
    E. Fabuel, C. Barragán, L. Silió, M.C. Rodríguez, M. Toro, Analysis of genetic diversity and conversation priorities in Iberian pigs based on microsatellite markers. Heredity 93, 104–113 (2004)PubMedCrossRefGoogle Scholar
  26. 26.
    E. Alves, A.I. Fernández, C. Barragán, C. Ovilo, C. Rodríguez, L. Silió, Inference of hidden population substructure of the Iberian pig breed using multilocus microsatellite data. J. Agric. Res. 4(1), 37–46 (2006)Google Scholar
  27. 27.
    J. Folch, M. Lees, G.H. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)PubMedPubMedCentralGoogle Scholar
  28. 28.
    Association of Official Analytical Chemistry (AOAC), Official methods of analysis of AOAC International. Vols 1 and 2 (AOAC International, Gaithersburg, 2000)Google Scholar
  29. 29.
    H.C. Hornsey, The color of cooked cured pork. Estimation of the nitric oxiden-haem pigments. J. Sci. Food Agric. 7(8), 534–541 (1956)CrossRefGoogle Scholar
  30. 30.
    A.M. Salih, D.M. Smith, J.F. Price, L.E. Dawson, Modified 2-thibarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 66(9), 1483–1488 (1987)PubMedCrossRefGoogle Scholar
  31. 31.
    S.R. Sandler, W. Karo, Source book of advanced organic laboratory preparations (Academic Press, San Diego, 1992)Google Scholar
  32. 32.
    L. Lorido, L. Sánchez-Montero, M. Asensio, D. Caballero, N. Martin, C. Fernández, A. Silva, ISO 17025 accreditation to determine the sensory quality and food safety in dry-cured ham and dry-cured shoulder (In IX International Symposium of the Mediterranean pig. Portalegre, Portugal, 2016)Google Scholar
  33. 33.
    C. García, J. Ventanas, T. Antequera, J. Ruiz, R. Cava, P. Álvarez, Measuring sensory quality of Iberian ham by Rasch model. J. Food Qual. 19, 397–412 (1996)CrossRefGoogle Scholar
  34. 34.
    J. Ruiz, J. Ventanas, R. Cava, M.L. Timón, C. García, Sensory characteristics of Iberian ham: influence of processing time and slice location. Food Res. Int. 31, 53–58 (1998)CrossRefGoogle Scholar
  35. 35.
    H. Stone, J. Sidel, S. Oliver, A. Woolsey, R.C. Singleton, Sensory evaluation by quantitative descriptive analysis. Food Technol. 28, 24–34 (1974)Google Scholar
  36. 36.
    R. Bro, A.K. Smilde, Principal component analysis. Anal. Methods 6(9), 2812–2831 (2014)CrossRefGoogle Scholar
  37. 37.
    R. Reina, P. López-Buesa, J. Sánchez del Pulgar, J. Ventanas, C. García, Effect of IGF-II (insulin-like growth factor-II) genotype on the quality of dry-cured hams and shoulders. Meat Sci. 92, 562–568 (2012)PubMedCrossRefGoogle Scholar
  38. 38.
    A.I. Andrés, S. Ventanas, J. Ventanas, R. Cava, J. Ruiz, Physico-chemical changes throughout the ripening of dry-cured hams with different salt content and processing conditions. Eur. Food Res. Technol. 221, 30–35 (2005)CrossRefGoogle Scholar
  39. 39.
    T. Pérez-Palacios, D. Caballero, A. Caro, P.G. Rodríguez, T. Antequera, Applying data mining and Computer Vision Techniques to MRI to estimate quality traits in Iberian hams. J. Food Eng. 131, 82–88 (2014)CrossRefGoogle Scholar
  40. 40.
    J.J. Córdoba, E. Aranda, J.M. Benito, Alteraciones originadas por microorganismos, ácaros e insectos en jamones Ibéricos, in Tecnología del jamón Ibérico, ed. by By J. Ventanas (Mundi-Prensa, Madrid, 2001), pp. 465–488Google Scholar
  41. 41.
    B. Peromingo, D. Caballero, A. Rodríguez, A. Caro, M. Rodríguez, Application of data mining techniques to predict the production of aflatoxin B1 in dry-cured ham. Food Control 108, 106884 (2020)CrossRefGoogle Scholar
  42. 42.
    F. Toldrá, M. Flores, Y. Sanz, Dry-cured ham flavour: enzymatic generation and process influence. Food Chem. 59, 523–530 (1997)CrossRefGoogle Scholar
  43. 43.
    J. Zhang, D. Pan, G. Zhou, Y. Wang, Y. Dang, J. He, G. Li, J. Cao, The changes of the volatile compounds derived from lipid oxidation of boneless dry-cured hams during processing. Eur. J. Lipid Sci. Technol. 121, 1900135 (2019)CrossRefGoogle Scholar
  44. 44.
    D. Caballero, T. Antequera, A. Caro, M.L. Durán, T. Pérez-Palacios, Data mining on MRI-computational texture features to predict sensory characteristics in ham. Food Bioprocess Technol. 9, 699–708 (2016)CrossRefGoogle Scholar
  45. 45.
    D. Caballero, T. Antequera, A. Caro, J.M. Amigo, B.K. Ersboll, A.B. Dahl, T. Pérez-Palacios, Analysis of MRI by fractals for prediction of sensory attributes: a case of study in loin. J. Food Eng. 227, 1–10 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Animal Source Foodstuffs Innovation Services (SiPA)University of ExtremaduraCáceresSpain
  2. 2.Department of Food Science, Faculty of Science, Chemometrics and Analytical TechnologyUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Ingafood S.AAlmendralejo, BadajozSpain
  4. 4.Department of Genetics and Animal ImprovementIRTA Av Alcalde Rovira RoureLleidaSpain

Personalised recommendations