Advertisement

Effect of microwave processing on physicothermal properties, antioxidant potential, in vitro protein digestibility and microstructure of durum wheat semolina

  • Dinkar B. Kamble
  • Rakhi SinghEmail author
  • Barjinder Pal Kaur
  • Savita Rani
  • Ashutosh Upadhyay
Original Paper
  • 10 Downloads

Abstract

The effect of microwave treatment on the physicothermal properties, antioxidant activity, protein digestibility and structural features of durum wheat semolina was investigated by varying time periods (1, 1.5 and 2 min) in a microwave oven set at 900 W. Results suggested that microwave treatment on durum wheat semolina caused a significant improvement in functional properties like water holding capacity (1.91 ± 0.08 to 2.63 ± 0.04 g/g), oil holding capacity (2.25 ± 0.36 to 3.05 ± 0.09 g/g), swelling power (6.08 ± 0.06 to 9.23 ± 1.15 g/100 g) and solubility (0.11 ± 0.01 to 0.13 ± 0.15 g/100 g). Overall colour difference (∆E*) increase from 22.63 ± 0.36 (untreated) to 31.14 ± 0.27 (2 min), while significant decrease in gelatinization enthalpy (2.49 ± 0.08 to 1.53 ± 0.09 J/g) and peak viscosity (1501 ± 5.29 to 127 ± 3.60 cP) was seen after the treatment. Total phenolic content (free + bound) decreased from 2.61 ± 0.01 to 0.98 ± 0.03 mg GAE/g, while antioxidant activity expressed as inhibitory concentration (IC50) improved (1.60 ± 0.05 to 0.79 ± 0.01 mg/ml) as microwave heating progressed. In vitro protein digestibility decreased significantly (71.35 ± 0.05 to 53.64 ± 0.04%) as the duration of microwave heating increased. Microstructure examination revealed small defects and rupturing of starch granules, whereas FTIR spectra of durum wheat semolina did not change by microwave heating.

Keywords

Microwave treatment Antioxidant capacity In vitro protein digestibility Microstructure FTIR 

Notes

References

  1. 1.
    F.J. Brouns, V.J. Van Buul, P.R. Shewry, Cereal Sci. 58, 2 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Zhao, S. Xiong, C. Qiu, Y. Xu, J. Stored Prod. Res. 43, 4 (2007)Google Scholar
  3. 3.
    S.M. El-Naggar, A.A. Mikhaiel, J. Stored Prod. Res. 47, 3 (2011)CrossRefGoogle Scholar
  4. 4.
    P. Purohit, D.S. Jayas, B.K. Yadav, V. Chelladurai, P.G. Fields, N.D.G. White, J. Stored Prod. Res. 53, 2 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Manickavasagan, P.M.K. Alahakoon, T.K. Al-Busaidi, S. Al-Adawi, A.K. Al-Wahaibi, A.A. Al-Raeesi, D.S. Jayas, J. Stored Prod. Res. 55, 4 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Qu, H. Wang, S. Liu, F. Wang, C. Liu, J. Food Sci. Technol. 54, 11 (2017)CrossRefGoogle Scholar
  7. 7.
    T.A.D. Colman, I.M. Demiate, E. Schnitzler, J. Therm. Anal. Calorim. 115, 3 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Hayat, X. Zhang, U. Farooq, S. Abbas, S. Xia, C. Jia, J. Zhang, Food Chem. 123, 2 (2010)CrossRefGoogle Scholar
  9. 9.
    W.N. Baba, I. Rashid, A. Shah, M. Ahmad, A. Gani, F.A. Masoodi, S.M. Wani, J. Saudi Soci. Agric. Sci. 15, 1 (2016)Google Scholar
  10. 10.
    L. Roman, M.M. Martinez, C.M. Rosell, M. Gomez, Food Bioprocess Technol. 8, 6 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Jogihalli, L. Singh, K. Kumar, V.S. Sharanagat, LWT-Food. Sci. Technol. 86, 12 (2017)Google Scholar
  12. 12.
    L. Padalino, M.A. Del Nobile, B. la Gatta, M. Rutigliano, A. Di Luccia, A. Conte, Food Chem. 283, 14 (2019)CrossRefGoogle Scholar
  13. 13.
    K. Jan, M. Ahmad, S. Rehman, A. Gani, K. Khagan, Food Meas. Charact. 13, 2 (2019)Google Scholar
  14. 14.
    D.B. Kamble, R. Singh, S. Rani, B.P. Kaur, A. Upadhyay, N. Kumar, J. Food Process. Pres. 43, 10 (2019)CrossRefGoogle Scholar
  15. 15.
    V.S. Sharanagat, R. Suhag, P. Anand, G. Deswal, R. Kumar, A. Chaudhary, P.K. Nema, Cereal Sci. 85, 1 (2019)CrossRefGoogle Scholar
  16. 16.
    K. Bashir, M. Aggarwal, LWT-. Food Sci. Technol. 69, 5 (2016)Google Scholar
  17. 17.
    C. Fuentealba, A.M. Quesille-Villalobos, A. González-Muñoz, J. Saavedra Torrico, K. Shetty, L. Gálvez Ranilla, CyTA 15, 1 (2017)Google Scholar
  18. 18.
    Dordević TM, Siler-Marinkovic SS, Dimitrijevic-Brankovic SI (2010) Food Chem.Google Scholar
  19. 19.
    S. Rani, R. Singh, B.P. Kaur, A. Upadhyay, D.B. Kamble, Applied. Biol. Chem. 61, 5 (2018)Google Scholar
  20. 20.
    A. Gull, K. Prasad, P. Kumar, J. Saudi Soc. Agric. Sci. 17, 2 (2018)Google Scholar
  21. 21.
    A.E.M.M. Afify, H.S. El-Beltagi, S.M.A. El-Salam, A.A. Omran, PLoS ONE 7(2), e31154 (2012)CrossRefGoogle Scholar
  22. 22.
    AACC, Approved Methods of the AACC, 10th ed. (St. Paul: MN, 2000).Google Scholar
  23. 23.
    I.A. Wani, A. Gani, A. Tariq, P. Shrama, F.A. Masoodi, H.M. Wani, Food Chem. 197, 7 (2016)CrossRefGoogle Scholar
  24. 24.
    Q.B. Ding, P. Ainsworth, A. Plunkelt, G. Trucker, H. Marson, J. Food Eng. 73, 2 (2006)CrossRefGoogle Scholar
  25. 25.
    H. Nawaz, M.A. Shad, S. Saleem, M.U.A. Khan, U. Nishan, T. Rasheed, M. Bilal, H.M.N. Iqbal, Int. J. Biol. Macromol. 113, 9 (2018)CrossRefGoogle Scholar
  26. 26.
    P. Jogihalli, L. Singh, K. Kumar, V.S. Sharanagat, Food Chem. 237, 24 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Xie, M. Yan, S. Yuan, S. Sun, Q. Huo, Chemistry. Cent. J. 7, 1 (2013)CrossRefGoogle Scholar
  28. 28.
    U. Uthumporn, N.I. Nadiah, W.Y. Koh, A.H. Zaibunnisa, L. Azwan, Int. Food Res. J. 23, 6 (2016)Google Scholar
  29. 29.
    P. Sharma, H.S. Gujral, C.M. Rosell, Cereal Sci. 53, 1 (2011)CrossRefGoogle Scholar
  30. 30.
    K.O. Falade, A.O. Abediyi, J. Food Process Eng. 38, 5 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Gani, T. Gazanfar, R. Jan, S.M. Wani, F.A. Masoodi, Saudi Society. Agric. Sci. 12, 2 (2013)Google Scholar
  32. 32.
    S.P. Patil, S.S. Arya, Food Meas. Charact. 11, 3 (2017)Google Scholar
  33. 33.
    H.S. Gujral, P. Sharma, S. Rachna, LWT 44(10), 2223–2230 (2011)CrossRefGoogle Scholar
  34. 34.
    F. Zhu, Y.Z. Cai, J. Bao, H. Corke, Food Chem. 120, 1 (2010)CrossRefGoogle Scholar
  35. 35.
    P. Kumari, B.S. Khatkar, J. Food Sci. Technol. 53, 7 (2016)Google Scholar
  36. 36.
    Y. Hangun-Balkir, M.L. McKenney, Green Chem. Lett. Rev. 5, 2 (2012)CrossRefGoogle Scholar
  37. 37.
    W. Li, X.N. Qu, Y. Han, S.W. Zheng, J. Wang, Y.P. Wang, Int. J. Mol. Sci. 16, 2 (2015)Google Scholar
  38. 38.
    J. Mauron, J. Nutr. Sci. Vitaminol. 36, 4 (1990)CrossRefGoogle Scholar
  39. 39.
    S.S. Kadam, R.R. Smithard, M.D. Eyre, D.G. Armstrong, J. Sci. Food Agric. 39, 3 (1987)CrossRefGoogle Scholar
  40. 40.
    R.I.C.A.R.D.O. Bressani, L.G. Elias, New protein foods (Academic Press, New York, 1974), p. 30Google Scholar
  41. 41.
    Jane J (2009) Structural features of starch granules (2nd ed) by BeMiller N, James L, Whistler R, Elsevier, USA, p 193.Google Scholar
  42. 42.
    Lewicka K, Siemion P, Kurcok P (2015) Int. J. Polymer Sci. (2015).Google Scholar
  43. 43.
    G. Lewandowicz, T. Jankowski, J. Format, Carbohydr. Polyms. 42, 2 (2000)Google Scholar
  44. 44.
    N. Nidhina, S.P. Muthukumar, Food Chem. 173, 8 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Food Technology Entrepreneurship & ManagementSonipatIndia

Personalised recommendations