Advertisement

Optimization of ultrasonic-assisted extraction of bioactive compounds from Nepeta (Nepeta binaludensis Jamzad)

  • Afsaneh Azimi Mahalleh
  • Parvin SharayeiEmail author
  • Elham Azarpazhooh
Original Paper
  • 8 Downloads

Abstract

Ultrasonication technology was utilized for extraction of effective components from Nepeta (Nepeta binaludensis Jamzad). Response surface methodology was employed in order for investigation the effects of independent process variables (ultrasonic extraction time (UET, min): 5, 10 and 15 min, ultrasound amplitude (UA, %): 20, 60 and 100%, ultrasonic extraction temperature (UEC, °C): 25, 35 and 45 °C and ultrasonic duty cycle (UDC, %): 20, 60 and 100%) on the yield (Y), total phenolic compounds (TPC), half maximal of radical (1,1-diphenyl-2-picryl hydrazyl, DPPH) scavenging activity (IC50) and ferric reducing-antioxidant power (FRAP) of ethanolic Nepeta extract. According to Derringer’s desired function approach, the optimal conditions based on both individual and combinations of all process variables were UET 15 min, UA 60%, UEC 25 °C and UDC 60%. At this optimum condition, the Y, TPC, IC50 and FRAP of the ultrasound-assisted extract (USx) were found to 10.93%, 402.63 mg GA/kg, 0.33 mg/mL and 2838.34 µmol Fe2+/kg, respectively which were well matched with the predicted values. The evaluation of antioxidant activity (IC50 and FRAP) indicates that the phenolic compounds from Nepeta possess significant antioxidant activity. Also, HPLC analysis revealed that at optimal condition of UAE, the quantity of caffeic acid (85.71%), rutin (3550%) and rosemarinic acid (468.62%) in extract increased in comparison with conventional method (solvent extraction).

Keywords

Phenolic compounds Nepeta binaludensis Response surface methodology Ultrasound Extraction 

Abbreviation

UAE

Ultrasound assisted extraction

FCD

Face-centered experimental design

RSM

Response surface methodology

Y

Yield

TPC

Total phenolic compounds

DPPH

Radical scavenging activity of DPPH

FRAP

Ferric reducing-antioxidant power

IC50

50% of Radical-scavenging Activity

UA

Ultrasonic amplitude

UET

Ultrasonic exposure time

UEC

Ultrasonic extraction temperature

UDC

Ultrasonic duty cycle USx

SOx

Ultrasound-assisted extract solvent extract

Notes

Compliance with ethical standards

Conflict of interest

Afsaneh Azimi Mahalleh, Parvin Sharayei, and Elham Azarpazhooh declare that they have no conflict of interest.

References

  1. 1.
    F. Shahidi, J. Yeo, Bioactivities of phenolics by focusing on suppression of chronic diseases: a review. Int. J. Mol. Sci. 19, 1–16 (2018)CrossRefGoogle Scholar
  2. 2.
    S.M.F. Bessada, J.C.M. Barreira, L. Barros, I.C.F.R. Ferreirab, M. Beatriz, P. Oliveira, Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f: an underexploited and highly disseminated species. Ind. Crops Prod. 89, 45–51 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Shakeri, F. Khakdan, V. Soheili, A. Sahebkar, G. Rassam, J. Asilia, Chemical composition, antibacterial activity, and cytotoxicity of essential oil from Nepeta ucrainica L. spp. kopetdaghensis. Ind. Crops Prod. 58, 315–321 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Nadjafi, A. Koocheki, P. Rezvani Moghaddam, B. Honermeier, First experiments on cultivation of Nepeta binaludensis Jamzad—an example of domestication of a highly endangered medicinal plant of Iran. Z Arznei Gewurzpflanzen, 17, (2012)Google Scholar
  5. 5.
    S. Pimentel-Moral, I. Borrás-Linares, J. Lozano-Sánchez, D. Arráez-Román, A. Martínez-Férez, A. Segura-Carretero, Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. J. Pharm. Biomed. Anal. 156, 313–322 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Poodi, M. Bimakr, A. Ganjloo, S. Zarringhalami, Intensification of bioactive compounds extraction from Feijoa (Feijoa sellowiana Berg.) leaves using ultrasonic waves. Food Bioprod. Process. 108, 37–50 (2018)CrossRefGoogle Scholar
  7. 7.
    I. Bozinou, G. Karageorgou, V.G. Batra, S.I. Dourtoglou, Lalas. Pulsed electric field extraction and antioxidant activity determination of moringa oleifera dry leaves: a comparative study with other extraction techniques, beverages 5(1), 1–13 (2019)Google Scholar
  8. 8.
    T. Hatami, J. Cezar Flores Johner, M.A.A. Meireles, Extraction and fractionation of fennel using supercritical fluid extraction assisted by cold pressing. Ind. Crops Prod. 123, 661–666 (2018)CrossRefGoogle Scholar
  9. 9.
    F. Feng, Z. Luo, B. Tao, C.H. Chen, Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT Food Sci. Technol. 60, 970–976 (2015)CrossRefGoogle Scholar
  10. 10.
    B. He, L.L. Zhang, X.Y. Yue, J. Liang, J. Jiang, X.L. Gao, P.X. Yue, Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016)CrossRefGoogle Scholar
  11. 11.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments (Wiley, New York, 2016)Google Scholar
  12. 12.
    T. Belwal, S.M. Ezzat, L. Rastrelli, I.D. Bhatt, M. Daglia, A. Baldi, H.P. Devkota, I.E. Orhan, J.K. Patra, G. Das, C. Anandharamakrishnan, L. Gomez-Gomez, S.F. Nabavi, S.M. Nabavi, A.G. Atanasov, A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. Trends Anal. Chem. 100, 82–102 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Irakli, P. Chatzopoulou, L. Ekateriniadou, Optimization of ultrasound-assisted extraction of phenolic compounds: leuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 124, 382–388 (2018)CrossRefGoogle Scholar
  14. 14.
    N.R. Mihailović, V.B. Mihailović, A.R. Ćirić, N.Z. Srećković, M.R. Cvijović, L.G. Joksov, Analysis of wild raspberries optimization of the ultrasonic-assisted extraction of phenolics and a new insight in phenolics bio accessibility. Plant Foods Hum. Nutr. 74, 399–404 (2019)CrossRefGoogle Scholar
  15. 15.
    N. Mohammadpour, S.A. Emami, J. Asili, Identification of volatile oil components of Nepeta binaludensis Jamzad by GC-MS and 13C-NMR methods and evaluation of its antimicrobial activity. J. Essent. Oil Bearing Plants 16(1), 102–107 (2013)CrossRefGoogle Scholar
  16. 16.
    Z. Tayarani-Najaran, M. Akaberi, M. Vatani, S.A. Emami, Evaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells. Iran. J. Basic Med. Sci. 19(6), 662–669 (2016)PubMedPubMedCentralGoogle Scholar
  17. 17.
    P. Sharayei, E. Azarpazhooh, S.H. Zomorodi, H.S. Ramaswamy, Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT Food Sci. Technol. 101, 342–352 (2019)CrossRefGoogle Scholar
  18. 18.
    F.C. Eze, L. Ngonadi, Alphabetic optimality criteria for 2 K central composite design. Acad. J. Appl. Math. Sci. 4(9), 107–118 (2018)Google Scholar
  19. 19.
    E. Azarpazhooh, H.S. Ramaswamy, Modeling and optimization of microwave osmotic dehydration of apple cylinders under continuous-flow spray mode processing conditions. Food Bioprocess Technol. 5(5), 1486–1501 (2012)CrossRefGoogle Scholar
  20. 20.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  21. 21.
    A. Siger, M. Nogala-Kalucka, E. Lampart-Szczapa, The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 15, 137–149 (2007)CrossRefGoogle Scholar
  22. 22.
    I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  23. 23.
    W. Zheng, S.Y. Wang, Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49(11), 5165–5170 (2001)CrossRefGoogle Scholar
  24. 24.
    Q. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process. Biochem. 39, 203–209 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Tomšik, B. Pavlic, J. Vladic, M. Ramic, J. Brindza, S. Vidovic, Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 29, 502–511 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Rouhani, Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia Rebaudiana. Ind. Crops Prod. 132, 226–235 (2019)CrossRefGoogle Scholar
  27. 27.
    J. Wang, B. Sun, Y. Cao, Y. Tian, X. Li, Optimization of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 106, 804–810 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Jina, Z. Liua, D. Liuc, G. Shia, D. Liud, Y. Yange, H. Guf, L. Yanga, Z. Zhoua, Natural antioxidant of rosemary extract used as an additive in the ultrasound-assisted extraction of anthocyanins from lingonberry (Vaccinium vitis- idaea L.) pomace. Ind. Crops Prod. 138, 111425 (2019)CrossRefGoogle Scholar
  29. 29.
    F. Dahmoune, H. Remini, S. Dairi, O. Aoun, K. Moussi, N. Bouaoudia-Madi, N. Adjeroud, N. Kadri, K. Lefsih, L. Boughani, L. Mouni, Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. Ind. Crops Prod. 77, 251–261 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Sharmila, V.S. Nikitha, S. Ilaiyarasia, K. Dhivya, V. Rajasekar, N.M. Kumar, K. Muthukumaran, C. Muthukumaran, Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 84, 13–21 (2016)CrossRefGoogle Scholar
  31. 31.
    Y. Chavan, R.S. Singhal, Ultrasound-assisted extraction (UAE) of bioactives from arecanut and optimization study using response surface methodology. Innov. Food Sci. Emerg. Technol. 17, 106–113 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Kozarski, A. Klaus, M. Niksic, D. Jakovljevic, J.P.F.G. Helsper, L.J.L.D. Van Griensven, Antioxidative and immune modulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Gano dermalucidum and Phellinus linteus. Food Chem. 129, 1667–1675 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Moure, J.M. Cruz, D. Franco, J.M. Dominguez, J. Sineiro, H. Dominguez, M.J. Nunez, J.C. Parajo, Natural antioxidants from residual sources. Food Chem. 72, 145–171 (2001)CrossRefGoogle Scholar
  34. 34.
    A. Gokbulut, Validated RP- HPLC method for quantification of phenolic compounds in methanol extracts of aerial parts and roots of Thymus sipyleus and evaluation of antioxidant potential. Trop. J. Pharm. Res. 14(10), 1871–1877 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Krizman, D. Baričevic, M. Prosek, Determination of phenolic compounds in fennel by HPLC and HPLC–MS using a monolithic reversed- phase column. J. Pharm. Biomed. Anal. 43(2), 481–485 (2007)CrossRefGoogle Scholar
  36. 36.
    Z. Guan, S. Li, Z. Lin, R. Yang, Y. Zhao, J. Liu, S. Yang, A. Chen, Identification and quantitation of phenolic compounds from the seed and pomace of Perilla frutescens using HPLC/PDA and HPLC–ESI/QTOF/MS/MS. Phytochem. Anal. 25(6), 508–513 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Han, S. Yang, Z. Cai, D. Pan, Z. Li, Z. Huang, P. Zhang, H. Zhu, L. Lei, W. Wang, Anti-Warburg effect of rosemarinic acid via miR- 155 in gastric cancer cells. Drug Des. Dev. Ther. 9, 2695 (2015)Google Scholar
  38. 38.
    A. Mazumder, N. Neamati, S. Sunder, J. Schulz, H. Pertz, E. Eich, Y. Pommier, Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J. Med. Chem. 40(19), 3057–3063 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science & Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
  2. 2.Agricultural Engineering Research DepartmentKhorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, MashhadMashhadIran

Personalised recommendations