Advertisement

Ultra sensitive detection of malachite green in fish muscle with gold nanoparticles and graphene oxide hybrid as a substrate for surface enhanced Raman scattering

  • Yan Zhao
  • Yuying Song
  • Yuanyi Zhang
  • Yuxia Fan
  • Keqiang LaiEmail author
Original Paper
  • 5 Downloads

Abstract

Malachite green (MG) is a banned fish drug, but is often found in various aquatic food products. In this study, Au nanoparticles (NPs) were incorporated with graphene oxide (GO) to fabricate Au NPs-GO hybrid films as surface enhanced Raman scattering (SERS) substrate for MG detection. The enhancement effect of the hybrid substrate for SERS signal of MG as influenced by GO concentration, size of Au NPs and pretreatment method for quartz sheets were evaluated. The optimal Au NPs-GO substrate was used to detect MG in fish muscle with SERS technology. The lowest detectable concentration for MG standard solution was 0.01 ng/mL, and the concentration of 0.25 ng/g could be detected in the muscle extracts of two different fish. SERS combined with Au NPs-GO hybrid substrate shows great potential for detection of trace amounts of MG in aquatic products.

Keywords

SERS Trace analysis Au nanoparticles Graphene oxide Malachite green 

Notes

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2017YFC1600706).

References

  1. 1.
    G. Gukowsky, T. Xie, S. Gao, Y. Qu, L. He, Food Control 92, 267–275 (2018)CrossRefGoogle Scholar
  2. 2.
    N. Duan, L. Yan, S. Wu, Z. Wang, Food Control 63, 122–127 (2016)CrossRefGoogle Scholar
  3. 3.
    P.H.B. Aoki, L.N. Furini, P. Alessio, A.E. Aliaga, C.J.L. Constantino, Rev. Anal. Chem. 32, 55–76 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Kurouski, R.P.V. Duyne, A. Chem, Anal. Chem. 87(5), 2901–2906 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    D. Bhandari, M.J. Walworth, M.J. Sepaniak, Appl. Spectrosc. 63(5), 571–578 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    G. Ding, S. Xie, Y. Liu, L. Wang, F. Xu, Appl. Surf. Sci. 345, 310–318 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Chen, X. Li, Y. Zhao, L. Chang, J. Qi, Carbon 81, 767–772 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Qian, Y. Cheng, X. Zhou, J. Wu, G. Xu, J. Colloid Interf. Sci. 397, 103–107 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Zhang, R. Hao, B. Zhao, Y. Fu, H. Zhang, H. Sina Moeendarbari, S. Christopher, B. Pickering, Y. Hao, Y. Liu, Appl. Surf. Sci. 400, 49–56 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Li, J. Yang, Y. Zhou, T. Zhong, S. Zheng, W. Zeng, Monatsh. Chem. 147(4), 677–683 (2016)CrossRefGoogle Scholar
  11. 11.
    K. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015–1024 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    D.W. Boukhvalov, M.L. Katsnelson, J. Am. Chem. Soc. 130(32), 10697–10701 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    D.W. Lee, L.V. De Los Santos, J.W. Seo, L. Leon Felix, A.D. Bustamante, J.M. Cole, C.H.W. Barnes, J. Phys. Chem. 114(17), 5723–5728 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Ling, L. Xie, Y. Fang, H. Xu, H.L. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, Z. Liu, Nano Lett. 10(2), 553–561 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    W. Xu, N. Mao, J. Zhang, Small 9(8), 1206–1224 (2013)PubMedCrossRefGoogle Scholar
  16. 16.
    S. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, H. Wang, J. Colloid Interf. Sci. 359(1), 24–29 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Yu, Y.S. Wei, H.J. Wang, C. Zhang, Y.J. Wei, M.H. Wang, B.Y. Man, F.C. Lei, Opt. Express 27, 9879–9894 (2019)PubMedCrossRefGoogle Scholar
  18. 18.
    P.V. Parvathi, R. Parimaladevi, V. Sathe, M.J. Umadevi, J. Mol. Liq. 273, 203–214 (2019)CrossRefGoogle Scholar
  19. 19.
    C.Y. Zhang, R. Hao, B. Zhao, Y.W. Hao, Y.Q. Liu, Appl. Surf. Sci. 409, 306–313 (2017)CrossRefGoogle Scholar
  20. 20.
    K.X. Xu, M.H. Guo, Y.P. Huang, X.D. Li, J.J. Sun, Talanta 180, 383–388 (2018)PubMedCrossRefGoogle Scholar
  21. 21.
    O.Y. Lei, L. Yao, T.H. Zhou, L.H. Zhu, Anal. Chim. Acta. 1027, 83–91 (2018)CrossRefGoogle Scholar
  22. 22.
    D. Deng, Q.Y. Lin, H. Li, Z.P. Huang, Y.Y. Kuang, H. Chen, J.L. Kong, Talanta 200, 272–278 (2019)PubMedCrossRefGoogle Scholar
  23. 23.
    C.Y. Long, Z.B. Mai, B.H. Zhu, X.Y. Zou, Y.H. Gao, X.D. Huang, J. Chromatogr. A 1203(1), 21–26 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    X. Zhang, M. Wang, L. Lin, G. Xiao, Z. Tang, X. Zhu, J. Biosci. Bioeng. 126(1), 69–77 (2018)PubMedCrossRefGoogle Scholar
  25. 25.
    S.B. Turnipseed, J.E. Roybal, H.S. Rupp, J.A. Hurlbut, A.R. Long, J. Chromatogr. B 670, 55–62 (1995)CrossRefGoogle Scholar
  26. 26.
    M. Oplatowska, L. Connolly, P. Stevenson, S. Stead, C.T. Elliott, Anal. Chim. Acta. 698(1–2), 51–60 (2011)PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Zhang, W. Yu, L. Pei, K. Lai, B.A. Rasco, Y. Huang, Food Chem. 169, 80–84 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    H. Chang, Z. Chen, L.B. Nie, J. Hunan Univ. Technol. 25(4), 91–94 (2011)Google Scholar
  29. 29.
    Y. Li, J. Yang, Y. Zhou, N. Zhou, J. Colloids Surf. A. 512, 93–100 (2017)CrossRefGoogle Scholar
  30. 30.
    G. Frens, Nat. Phys. Sci. 241(105), 20–22 (1973)CrossRefGoogle Scholar
  31. 31.
    O. Horovitz, G. Tomoaia, A. Mocanu, T. Yupsanis, M.T. Cotisel, Gold Bull. 40(3), 213–218 (2007)CrossRefGoogle Scholar
  32. 32.
    W. Fan, Y.H. Lee, S. Pedireddy, Q. Zhang, T. Liu, X. Ling, Nanoscale 6(9), 4843–4851 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    D. Hurtaud-Pessel, P. Couëdor, E. Verdon, J. Chromatogr. A 1218(12), 1632–1645 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Y. Zhou, X. Cheng, J. Yang, N. Zhao, S. Ma, D. Li, T. Zhong, RSC Adv. 3(45), 23236–23241 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Song, Y. Huang, Y. Fan, Z. Zhao, W. Yu, B.A. Rasco, K. Lai, Nanomaterials 6(9), 175 (2016)PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    S. Link, A.M. El-Sayed, J. Phys. Chem. B 103(21), 4212–4217 (1999)CrossRefGoogle Scholar
  37. 37.
    C.S. Seney, B.M. Gutzman, R.H. Goddard, J. Phys. Chem. C 113(1), 74–80 (2009)CrossRefGoogle Scholar
  38. 38.
    A.A. Volkert, V. Subramaniam, A.J. Haes, Chem. Commun. 47(1), 478–480 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Prochazka, Basics of Raman scattering (RS) spectroscopy (Springer, Switzerland, 2016), pp. 1–4Google Scholar
  40. 40.
    H.Y. Park, J.D. Driskell, K.M. Kwarta, R.J. Lipert, M.D. Porter, C. Schoen, J.D. Neill, J.F. Ridpath, Surface-Enhanced Raman scattering (Springer, Berlin, 2006), pp. 427–446CrossRefGoogle Scholar
  41. 41.
    G.H. Gu, J.S. Suh, J. Raman Spectrosc. 41(6), 624–627 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Stewart, P.M. Fredericks, Spectrochim. Acta A 55(7–8), 1615–1640 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.Engineering Research Center of Food Thermal Processing TechnologyShanghai Ocean UniversityShanghaiChina

Personalised recommendations