Preparation of acetylated starch by rolling-assisted method and its influence mechanism

  • Aiyun Pan
  • Yangyong DaiEmail author
  • Hanxue Hou
  • Wentao Wang
  • Xiuzhen Ding
  • Hui Zhang
  • Xiangyang Li
  • Haizhou Dong
Original Paper


Advanced equipment can be used to produce high quality modified starch, but the secrets of these equipment are still unclear. In this study, cassava starch was taken as the research object to produce acetylated starch with low degree of substitution under rolling. Effects of rolling on acetylated starch quality and the changes in structures and properties of native starch were studied. The influence mechanisms of rolling on the quality of acetylated starch was analyzed according to the theory of mechanochemistry. The results indicated that the quality of acetylated starch increased prominently after rolling for 2 h and 12 h, and the reaction efficiency increased to 71.61% and 72.77%, respectively. The changes in structures and properties of native starch indicated that rolling have a significant mechanochemical effect on starch granules. With the increase of rolling time, the interior of starch granules gradually experienced the stress, aggregation and agglomeration stages, consecutively. Therefore, the quality of acetylated starch was improved significantly. In addition, the three stages of mechanochemical effect of starch varied in terms of influence mechanisms, so the mechanism of preparing high quality modified starch by means of advanced equipment was revealed.


Rolling Mechanochemical effect Acetylated starch Quality Influence mechanism 



The authors acknowledge the funding support from the National Natural Science Foundation of China (Grant No. 31471619) and the Funds of Shandong “Double Tops” Program of China (Grant No. SYL2017XTTD01).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflicts of interest.


  1. 1.
    S.T. Bee, L.T. Sin, C.T. Ratnam, B.F. Yap, A.R. Rahmat, Nucl. Instrum. Methods Phys. Res. B 416, 73–88 (2018). CrossRefGoogle Scholar
  2. 2.
    J. Huang, M. Wei, R. Ren, H. Li, S. Liu, D. Yang, Carbohydr. Polym. 163, 324–329 (2019). CrossRefGoogle Scholar
  3. 3.
    N. Willis-Fox, E. Rognin, T.A. Aljohani, R. Daly, Chem 4(11), 2499–2531 (2018). CrossRefGoogle Scholar
  4. 4.
    S. Romeis, J. Schmidt, W. Peukert, Int. J. Miner. Process. 156, 24–31 (2016). CrossRefGoogle Scholar
  5. 5.
    P. Zhang, H. Li, G.M. Veith, S. Dai, Adv. Mater. 27(2), 234–239 (2015). CrossRefPubMedGoogle Scholar
  6. 6.
    L. Li, S. Pu, Y. Liu, L. Zhao, J. Ma, J. Li, Adv. Powder Technol. 29(9), 2194–2203 (2018). CrossRefGoogle Scholar
  7. 7.
    K. Topolski, H. Garbacz, Mater. Sci. Eng. A 739, 277–288 (2019). CrossRefGoogle Scholar
  8. 8.
    F. Zhu, Carbohydr. Polym. 122, 456–480 (2015). CrossRefPubMedGoogle Scholar
  9. 9.
    K. Zhang, Y. Dai, H. Hou, X. Li, H. Dong, W. Wang, H. Zhang, Int. J. Biol. Macromol. 120, 2026–2034 (2018). CrossRefPubMedGoogle Scholar
  10. 10.
    D. Lin, W. Zhou, J. Zhao, W. Lan, R. Chen, Y. Li, B. Xing, Z. Li, M. Xiao, Z. Wu, X. Li, Int. J. Biol. Macromol. 103, 316–326 (2017). CrossRefPubMedGoogle Scholar
  11. 11.
    K. Zhao, B. Li, M. Xu, L. Jing, M. Gou, Z. Yu, J. Zheng, W. Li, LWT 90, 116–123 (2018). CrossRefGoogle Scholar
  12. 12.
    A. Makowska, A. Szwengiel, P. Kubiak, J. Tomaszewska-Gras, Starch/Stärke 66(9–10), 895–902 (2014). CrossRefGoogle Scholar
  13. 13.
    Y. Wu, D. Fan, Y. Gao, S. Ma, B. Yan, H. Lian, J. Zhao, H. Zhang, Int. J. Biol. Macromol. 118, 997–1003 (2018). CrossRefPubMedGoogle Scholar
  14. 14.
    J. Wang, L. Su, S. Wang, J. Sci. Food Agric. 90(3), 424–429 (2010). CrossRefPubMedGoogle Scholar
  15. 15.
    J. Bai, X. Xie, X. Li, Y. Zhang, Starch/Stärke 69(11–12), 1700018 (2017). CrossRefGoogle Scholar
  16. 16.
    Y. Lv, L. Zhang, M. Li, X. He, L. Hao, Y. Dai, Int. J. Biol. Macromol. 129, 207–213 (2019). CrossRefPubMedGoogle Scholar
  17. 17.
    M. Kuruc, T. Vopát, J. Peterka, Procedia Eng. 100, 877–884 (2015). CrossRefGoogle Scholar
  18. 18.
    P.K. Borah, M. Rappolt, R.K. Duary, A. Sarkar, Food Hydrocolloid 86, 162–171 (2019). CrossRefGoogle Scholar
  19. 19.
    V.K. Shivaraju, S. Vallayil Appukuttan, Starch/Stärke 71(5–6), 1700026 (2018). CrossRefGoogle Scholar
  20. 20.
    T.P.R. Santos, C.M.L. Franco, E.L. Carmo, J.L. Jane, M. Leonel, J. Food Sci. Technol. 56, 376–383 (2019). CrossRefPubMedGoogle Scholar
  21. 21.
    Q. Lai, Y. Li, Y. Wu, J. Ouyang, J. Food. Sci. Technol. 56(4), 1988–1996 (2019). CrossRefPubMedGoogle Scholar
  22. 22.
    L. Wang, P. Wang, A.S. Saleh, Q. Yang, Y. Ge, N. Wang, S. Yang, Z. Xiao, Starch/Stärke 70(11–12), 1700290 (2018). CrossRefGoogle Scholar
  23. 23.
    M. Yang, Mechanochemistry of Materials (Science Press, Beijing, 2010), pp. 4–64Google Scholar
  24. 24.
    J.M. Martinez-Alejo, Y. Benavent-Gil, C.M. Rosell, T. Carvajal, M.M. Martinez, Carbohydr. Polym. 200, 543–551 (2018). CrossRefPubMedGoogle Scholar
  25. 25.
    H. Atrous, N. Benbettaieb, F. Hosni, S. Danthine, C. Blecker, H. Attia, D. Ghorbel, Int J Biol Macromol. 80, 64–76 (2015). CrossRefPubMedGoogle Scholar
  26. 26.
    Y. Yassaroh, A.J. Woortman, K. Loos, Carbohydr. Polym. 201, 1–8 (2019). CrossRefGoogle Scholar
  27. 27.
    S. Naguleswaran, T. Vasanthan, R. Hoover, D. Bressler, Food Res. Int. 51(2), 771–782 (2013). CrossRefGoogle Scholar
  28. 28.
    B. Ozel, D. Dag, M. Kilercioglu, S.G. Sumnu, M.H. Oztop, LWT-Food. Sci. Technol. 83, 10–17 (2017). CrossRefGoogle Scholar
  29. 29.
  30. 30.
    S. Li, Z. Luo, X. Guan, K. Huang, Q. Li, F. Zhu, J. Liu, J. Cereal Sci. 87, 78–84 (2019). CrossRefGoogle Scholar
  31. 31.
    G.Y. Ren, D. Li, L.J. Wang, N. Özkan, Z.H. Mao, Carbohydr. Polym. 79(1), 101–105 (2010). CrossRefGoogle Scholar
  32. 32.
    J. Zhang, L. Chen, J. Cui, L. Xiao, Z. Wang, J. Sci. Food Agric. 94(8), 1505–1512 (2014). CrossRefPubMedGoogle Scholar
  33. 33.
    J. Szymońska, M. Molenda, J. Wieczorek, Carbohydr. Polym. 134, 102–109 (2015). CrossRefPubMedGoogle Scholar
  34. 34.
    Y. Xie, B. Zhang, M.N. Li, H.Q. Chen, Food Chem. 289, 187–194 (2019). CrossRefPubMedGoogle Scholar
  35. 35.
    X. Xu, Y. Chen, Z. Luo, X. Lu, LWT 99, 179–187 (2019). CrossRefGoogle Scholar
  36. 36.
    M. Worzakowska, Starch-Stärke 70(7–8), 1700330 (2018). CrossRefGoogle Scholar
  37. 37.
    Q. Wu, Mechanochemistry of Inorganic Materials (Chemical Industry Press, Beijing, 2008), pp. 5–12Google Scholar
  38. 38.
    K. Niu, Y. Dai, H. Dong, H. Hou, H. Zhang, C. Liu, Q. Ji et al., Food Sci. 38(19), 18–23 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and EngineeringShandong Agricultural UniversityTai’anChina
  2. 2.Engineering and Technology Center for Grain Processing in Shandong ProvinceTai’anChina

Personalised recommendations