Advertisement

Effect of enzymatic hydrolysis using endo- and exo-proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates

  • Yixiang XuEmail author
  • Magdalini Galanopoulos
  • Edward Sismour
  • Shuxin Ren
  • Zelalem Mersha
  • Patricia Lynch
  • Abeer Almutaimi
Original Paper
  • 3 Downloads

Abstract

Chickpea protein isolate was hydrolyzed batchwise using Alcalase as an endopeptidase and Flavourzyme as an exopeptidase, by either individual or sequential treatment. Secondary structure, SDS-PAGE molecular weight profile, functional properties, and antioxidant activity of the hydrolysates were investigated. Alcalase was more effective than Flavourzyme to cleave the peptide bonds, and the degree of hydrolysis (DH) of Alcalase-treated hydrolysate was 25.8% compared to Flavourzyme-treated counterpart with a DH of 11.9%. Sequential treatment increased the DH up to 50%. The hydrolysis process significantly changed the protein’s secondary structure characterized by decreased ordered structures and increased disordered structures. The more notable changes occurred for those that were treated sequentially. Protein banding patterns of the hydrolysates were also markedly changed, especially for those treated by Alcalase in which no visible band was observed. Furthermore, hydrolysates had a significant (P < 0.05) increase in the solubility, emulsifying capacity, and DPPH· scavenging capacity. The changes in DH and protein secondary structure significantly correlated with functional properties and DPPH· scavenging capacity. DH presented a significant inverse association with emulsifying stability (r = − 0.940), but a positive correlation with DPPH· scavenging activity (r = 0.951). β-sheet was found to be negatively correlated with both solubility (r = − 0.979) and DPPH· scavenging activity (r = − 0.979). However, an opposite trend was observed for β-turn which positively correlated with both solubility (r = 0.881) and DPPH· scavenging activity (r = − 0.909). The results reveal that hydrolysis enhanced the functional properties and antioxidant activity of chickpea protein which may be beneficial for potential functional food ingredient applications.

Keywords

Chickpea protein Enzymatic hydrolysis Secondary structure Protein profile Functional properties Antioxidant properties 

Notes

Acknowledgements

Funding was provided through the USDA Evans-Allen program and the research was conducted at Virginia State University Agricultural Research Station (Journal Series number 361).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    L.M. Ohr, Food Tech. 10, 70–75 (2018)Google Scholar
  2. 2.
    S. Abbo, D. Shtienberg, J. Lichtenzveig, S. Lev-Yadun, A. Gopher, Q. Rev, Biology 78, 435–448 (2003)Google Scholar
  3. 3.
    A. Clemente, J. Vioque, R. Sanchez-Vioque, J. Pedroche, F. Millán, J. Agric. Food Chem. 47, 3776–3781 (1999)CrossRefGoogle Scholar
  4. 4.
    A.M. Ghribi, I.M. Gafsi, A. Sila, C. Blecker, S. Danthine, H. Attia, A. Bougatef, S. Besbes, Food Chem. 187, 322–330 (2015)CrossRefGoogle Scholar
  5. 5.
    B.H. Sarmadi, A. Ismail, Peptides 31, 1949–1956 (2010)CrossRefGoogle Scholar
  6. 6.
    V. Muhamyankaka, C.F. Shoemaker, M. Nalwoga, X.M. Zhang, Int. Food Res. J. 20, 2227–2240 (2013)Google Scholar
  7. 7.
    O.L. Tavano, J. Mol. Catal. B: Enzym. 90, 1–11 (2013)CrossRefGoogle Scholar
  8. 8.
    M.R. Segura-Campos, L. Espinosa-García, L.A. Chel-Guerrero, D.A. Betancur-Ancona, Int. Food Prop. 15, 770–780 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Kong, H. Zhou, H. Qian, Food Chem. 102, 759–763 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Merz, T. Eisele, P. Berends, D. Appel, S. Rabe, I. Blank, T. Stressler, L. Fischer, J. Agric. Food Chem. 63, 5682–5693 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Clemente, J. Vioque, R. Sánchez-Vioque, J. Pedroche, J. Bautista, F. Millán, Food Chem. 67, 269–274 (1999)CrossRefGoogle Scholar
  12. 12.
    Y. Li, B. Jiang, T. Zhang, W. Mu, J. Liu, Food Chem. 106, 444–450 (2008)CrossRefGoogle Scholar
  13. 13.
    M.D.M. Yust, M.D.C. Millán-Linares, J.M. Alcaide-Hidalgo, F. Millán, J. Pedroche, J. Sci. Food Agric. 92, 1994–2001 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Torres-Fuentes, M.D.M. Contreras, I. Recio, M. Alaiz, J. Vioque, Food Chem. 180, 194–202 (2015)CrossRefGoogle Scholar
  15. 15.
    A.K. Stone, A. Karalash, R.T. Tyler, T.D. Warkentin, M.T. Nickerson, Food Res. Int. 76, 31–38 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Adler-Nissen, J. Agric. Food Chem. 27, 1256–1262 (1979)CrossRefGoogle Scholar
  17. 17.
    M. Carbonaro, P. Maselli, P. Dore, A. Nucara, Food Chem. 108, 361–368 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Xu, M. Obielodan, E. Sismour, A. Arnett, S. Alzahrani, B. Zhang, Int. J. Food Sci. Technol. 52, 1147–1154 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Kaur, N. Singh, Food Chem. 102, 366–374 (2007)CrossRefGoogle Scholar
  20. 20.
    Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Washington DC, 2000)Google Scholar
  21. 21.
    V. Klompong, S. Benjakul, D. Kantachote, F. Shahidi, Food Chem. 102, 1317–1327 (2007)CrossRefGoogle Scholar
  22. 22.
    E. Molina, A. Papadopoulou, D.A. Ledward, Food Hydrocolloid 15, 263–269 (2001)CrossRefGoogle Scholar
  23. 23.
    Y. Xu, A. Cartier, A. Porter, K. Lalancette, Z. Abraha-Eyob, E. Sismour, H. Si, X. Wang, N. Rehmani, L. Githinji, J. Food Meas. Charact. 12, 2591–2597 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Kamnrdpetch, M. Weiss, C. Kasper, T. Scheper, Enzym. Microb. Technol. 40, 508–514 (2007)CrossRefGoogle Scholar
  25. 25.
    Q. Zhao, H. Xiong, C. Selomulya, X. Chen, H. Zhong, S. Wang, W. Sun, Q. Zhou, Food Chem. 134, 1360–1367 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Sbroggio, M.S. Montilha, M.R.G. Figueiredo, S.R. Georgetti, L. Kurozawa, Food Sci. Technol. 36, 375–381 (2016)CrossRefGoogle Scholar
  27. 27.
    C.M. Silver, R. Aline, C. Prentice, Int. Food Res. J. 21, 1751–1761 (2014)Google Scholar
  28. 28.
  29. 29.
    J. Ahmed, S.K. Varshney, H.S. Ramaswamy, LWT Food Sci. Tech. 42, 1538–1544 (2009)CrossRefGoogle Scholar
  30. 30.
    M.A.M. Mune, D.S. Sogi, Int. J. Food Prop. 19, 371–384 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Wang, Y. Su, F. Jia, H. Jin, Chem. Cent. J. 7, 62 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Zhao. Y.L. Xiong, D.H. McNear, J. Food Sci. 78, C152–C159 (2013)CrossRefGoogle Scholar
  33. 33.
    Y.-W. Chang, I. Alli, A.T. Molina, Y. Konishi, J.I. Boye, Food Bioprocess Technol. 5, 618–625 (2012)CrossRefGoogle Scholar
  34. 34.
    A.M. Ghribi, A. Sila, R. Przybylski, N. Nedjar-Arroume, I. Makhlouf, C. Blecher, H. Attia, P. Dhulster, A. Bougatef, S. Besbes, J. Funct. Foods 12, 516–525 (2015)CrossRefGoogle Scholar
  35. 35.
    B. Cabanillas, M.M. Pedrosa, J. Rodríguez, A. González, M. Muzquiz, C. Cuadrado, J.F. Crespo, C. Burbano, Mol. Nutr. Food Res. 54, 1266–1272 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Sánchez-Vioque, A. Clemente, J. Vioque, J. Bautista, F. Millán, Food Chem. 64, 237–243 (1999)CrossRefGoogle Scholar
  37. 37.
    N. Singh, M. Kaur, K.S. Sandhu, Dry. Technol. 23, 975–988 (2005)CrossRefGoogle Scholar
  38. 38.
    A.G.B. Wouters, I. Rombouts, E. Fierens, K. Brijs, J.A. Delcour, Compr. Rev. Food Sci. Food Saf. 15, 786–800 (2016)CrossRefGoogle Scholar
  39. 39.
    P. Meinlschmidt, D. Sussmann, U. Schweiggert-Weisz, P. Eisner, Food Sci. Nutr. 4, 11–23 (2016)CrossRefGoogle Scholar
  40. 40.
    S.D.D. Santos, V.G. Martins, M. Salas-Mellado, C. Prentice, Food Bioprocess Technol. 4, 1399–1406 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Yarnpakdee, S. Benjakul, H. Kristinsson, H. Kishimura, J. Food Sci. Technol. 52, 3336–3349 (2015)CrossRefGoogle Scholar
  42. 42.
    C. Pazinatto, L.G. Malta, G.M. Pastore, M.F. Netto, Food Sci. Technol. 33, 485–493 (2013)CrossRefGoogle Scholar
  43. 43.
    S.N. Jamdar, V. Rajalakshmi, M.D. Pednekar, F. Juan, V. Yardi, A. Sharma, Food Chem. 121, 178–184 (2010)CrossRefGoogle Scholar
  44. 44.
    D. Kumar, M.K. Chatli, R. Singh, N. Mehta, P. Kumar, Dairy Sci. Technol. 96, 391–404 (2016).CrossRefGoogle Scholar
  45. 45.
    M. Carbonaro, M. Nardini, P. Maselli, A. Nucara, Org. Agric. 16, 334–335 (2015)Google Scholar
  46. 46.
    M. Carbonaro, A. Nucara, Amino Acids 38, 679–690 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Agricultural Research StationPetersburgUSA
  2. 2.Department of Family and Consumer ScienceVirginia State UniversityPetersburgUSA

Personalised recommendations