Advertisement

Impact of sprouting and cooking on antioxidant compounds and activity in different Italian varieties of Lens culinaris L.

  • Lorenza Bellani
  • Simonetta Muccifora
  • Lucia GiorgettiEmail author
Original Paper
  • 8 Downloads

Abstract

Lentils (Lens culinaris L.) are among the most ancient seeds cultivated since prehistory. Several lentil varieties, differing for nutrients and antioxidant compounds, are cultivated in various regions of Italy. Seeds of three varieties of L. culinaris: Onano, Beluga and Villalba, differing for morphology, colour and size, were studied. Antioxidant activity and the content in total polyphenols, flavonoids and flavonols were evaluated in raw and cooked seeds and in cooking water. The same compounds were quantified in sprouts up to 4 days of germination. The highest content of polyphenols was observed in integument of Beluga seeds, flavonoids in integument of Villalba seeds, while flavonols were particularly abundant in cotyledon of Onano seeds. After seed cooking, a decrease in phytochemicals and antioxidant capacity was observed in tissues but they were partially recovered in cooking water.

Keywords

Antioxidant compounds Cooking Lens culinaris Seeds Sprouts 

Notes

Funding

This work was supported by local funding of the University of Siena and by National Research Council of Italy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    R. Mora-Escobedo, J. De Berrios, G.F. Gutierrez-Lopez, Seeds as Functional Foods and Nutraceuticals: New Frontiers in Food Science (Nova Science Publishers, New York, 2014)Google Scholar
  2. 2.
    A. Cardador-Martinez, G. Loarca-Pina, B.D. Oomah, J. Agric. Food Chem. 50, 6975 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Dueñas, T. Hernández, I. Estrella, Eur. Food Res. Technol. 215, 478 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Marventano, M.I. Pulido, C. Sanchez-Gonzalez, J. Godos, A. Speciani, F. Galvano, G. Grosso, Public Health Nutr. 20, 245 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Papandreou, N. Becerra-Tomás, M. Bulló, M.Á. Martínez-González, D. Corella, R. Estruch, E. Ros, F. Arós, H. Schroder, M. Fitó, L. Serra-Majem, J. Lapetra, M. Fiol, M. Ruiz-Canela, J.V. Sorl, J. Salas-Salvadó, Clin. Nutr. 38, 348 (2019)CrossRefGoogle Scholar
  6. 6.
    J.W. Finley, C. Sandlin, D.L. Holliday, M.J. Keenan, W. Prinyawiwatkul, J. Zheng, J. Funct. Foods. 5, 1487 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Singhal, G. Kaushik, P. Mathur, Crit. Rev. Food Sci. Nutr. 54, 655 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Pusztai, S. Bardocz, M.A. Martín-Cabrejas, in ed. by M. Mutzquiz, G.D. Hill, C. Cuadrado, M.M. Pedrosa, C. Burbano, Proceedings of the Fourth International Workshop on Antinutritional Factors in Legume Seeds and Oilseeds. (EAAP, Wageningen Academic Publishers, 2004), pp. 87–100Google Scholar
  9. 9.
    P. Bora, J. Acad. Ind. Res. 3, 285 (2014)Google Scholar
  10. 10.
    M. Dueñas, T. Sarmento, Y. Aguilera, V. Benitez, E. Mollá, R.M. Esteban, M.A. Martín-Cabrejas, LWT - Food Sci. Technol. 66, 72 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Erba, D. Angelino, A. Marti, F. Manini, F. Faoro, F. Morreale, N. Pellegrini, M.C. Casiraghi, Int. J. Food Sci. Nutr. 70, 30 (2019)CrossRefGoogle Scholar
  12. 12.
    A. Duhan, N. Khetarpaul, S. Bishnoi, Nutr. Health 13, 227 (2000)PubMedGoogle Scholar
  13. 13.
    N.E. Rocha-Guzman, R.F. Gonzalez-Laredo, F.J. Ibarra-Perez, C.A. Nava-Berumen, J.A. Gallegos-Infante, Food Chem. 100, 31 (2007)CrossRefGoogle Scholar
  14. 14.
    N. Huma, M. Anjum, S. Sehar, M. Khan, S. Hussain, Nutr. Food Sci. 38, 570 (2008)CrossRefGoogle Scholar
  15. 15.
    B. Xu, S.K.C. Chang, J. Agric. Food Chem. 57, 4754 (2009)CrossRefGoogle Scholar
  16. 16.
    G. Urbano, J.M. Porres, J. Frias, C. Vidal-Valverde, in ed. by S.S. Yadav, D. McNeil, Stevenson P.C. (Springer, Dordrecht, p. 47), 2007Google Scholar
  17. 17.
    V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, J. Agric Food Chem. 50, 3010 (2002)CrossRefGoogle Scholar
  18. 18.
    F. Fratianni, F. Cardinale, A. Cozzolino, T. Granese, D. Albanese, M. Di Matteo, M. Zaccardelli, R. Coppola, F. Nazzaro, J. Funct. Foods 7, 551 (2014)CrossRefGoogle Scholar
  19. 19.
    B.J. Xu, S.K. Chang, J. Food Sci. 72, S159 (2007)CrossRefGoogle Scholar
  20. 20.
    B.D. Oomah, F. Caspar, L. Malcolmson, A.S. Bellido, Food Res. Int. 44, 436 (2011)CrossRefGoogle Scholar
  21. 21.
    V. Neveu, J.F. Perez-Jiménez, V. VosCrespy, L. du Chaffaut, L. Mennen, C. Knox, R. Eisner, J. Cruz, D. Wishart, A. Scalbert. (2010), https://phenol-explorer.eu/reports/42.
  22. 22.
    G. Laghetti, A.R. Piergiovanni, G. Sonnante, L. Lioi, D. Pignone, Eur. J. Plant Sci. Biotechnol. 2, 48 (2008)Google Scholar
  23. 23.
    P.M. Guarrera, V. Savo, J. Ethnopharmacol. 146, 659 (2013)CrossRefGoogle Scholar
  24. 24.
    G.X. Jian, R.T. Cheng, P.H. Qing, Y.L. Ji, D.W. Xiang, D.T. Xiang, J. Agric. Food Chem. 57, 10392 (2009)CrossRefGoogle Scholar
  25. 25.
    S.L. Kim, S.K., Kim, C.H. Park, Food Res. Int. 37, 319 (2004).CrossRefGoogle Scholar
  26. 26.
    D.K. Kim, S.C. Jeong, S. Gorinstein, S.U. Chon, Plant Food. Hum. Nutr. 67, 71 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Sharma, H.S. Gujral, Food Chem. 120, 673 (2010)CrossRefGoogle Scholar
  28. 28.
    L. Giorgetti, G. Giorgi, E. Cherubini, P.G. Gervasi, C.M. Della Croce, V. Longo, L. Bellani, Nat. Prod. Res. 23, 1 (2017)Google Scholar
  29. 29.
    S. Frassinetti, E. Moccia, L. Caltavuturo, M. Gabriele, V. Longo, L. Bellani, G. Giorgi, L. Giorgetti, Food Chem. 262, 56 (2018)CrossRefGoogle Scholar
  30. 30.
    M.R. MegatRusydi, A. Azrina, Int. Food Res. J. 19, 673 (2012)Google Scholar
  31. 31.
    S.E. Ruzin, in Plant Microtechnique and Microscopy (Oxford University Press, Oxford, 1999)Google Scholar
  32. 32.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144 (1965)Google Scholar
  33. 33.
    D. Heimler, P. Vignolini, M.G. Dini, F.F. Vincieri, A. Romani, Food Chem. 99, 464 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Romani, P. Mancini, S. Tatti, F. Vincieri, Ital. J. Food Sci. 1, 13 (1996)Google Scholar
  35. 35.
    S. Boudjou, B.D. Oomah, F. Zaidi, F. Hosseinian, Food Chem. 138, 1543 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Ganesan, B. Xu, Int. J. Mol. Sci. 18, 2331 (2017)CrossRefGoogle Scholar
  37. 37.
    V. Lattanzio, V.M.T. Lattanzio, A. Cardinali, in Phytochemistry: Advances in Research, ed. by F. Imperato. (Research Signpost, Trivandrum, pp. 23–67), 2006Google Scholar
  38. 38.
    H.P. Bais, S.W. Park, T.L. Weir, R.M. Callaway, J.M. Vivanco, Trends Plant Sci. 9, 26 (2004)CrossRefGoogle Scholar
  39. 39.
    I. Debeaujon, K.M. Léonkloosterziel, M. Koornneef, Plant Physiol. 122, 403 (2000)CrossRefGoogle Scholar
  40. 40.
    A. Segev, H. Badani, L. Galili, R. Hovav, Y. Kapulnik, I. Shomer, S. Galili, Food Nutr. Sci. 3, 369 (2012)Google Scholar
  41. 41.
    B. Xu, S.K. Chang, Food Chem. 110, 1 (2008)CrossRefGoogle Scholar
  42. 42.
    N. Landi, S. Pacifico, S. Piccolella, A.M. Di Giuseppe, M.C. Mezzacapo, S. Ragucci, F. Iannuzzi, A. Zarrelli, A. Di Maro, Food Funct. 6, 3155 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Świeca, U. Gawlik-Dziki, D. Kowalczyk, U. Złotek, Sci. Hortic. 140, 87 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Khandelwal, S.A. Udipi, P. Ghugre, Food Res. Int. 43, 526 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of SienaSienaItaly
  2. 2.Institute of Agricultural Biology and BiotechnologyItalian National Research CouncilPisaItaly

Personalised recommendations